
Legal Information
OpenGL Programmer's Reference
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1995 - 1996 Microsoft Corporation. All rights reserved.

Portions © Silicon Graphics, Inc. from the OpenGL Programming Guide and the OpenGL Reference
Manual. Reprinted with permission of Silicon Graphics, Inc.

Microsoft, MS, Windows, Win32, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

TrueType is a registered trademark of Apple Computer, Inc.

Intel is a registered trademark of Intel Corporation.

AT and IBM are registered trademarks of International Business Machines Corporation.

OpenGL and Silicon Graphics are registered trademarks, and IRIS GL is a trademark of Silicon
Graphics, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Introduction to OpenGL
As a software interface for graphics hardware, OpenGL's main purpose is to render two- and three-
dimensional objects into a frame buffer. These objects are described as sequences of vertices (which
define geometric objects) or pixels (which define images). OpenGL performs several processing steps on
this data to convert it to pixels to form the final desired image in the frame buffer.

The following topics present a global view of how OpenGL works:

· Primitives and Commands discusses points, line segments, and polygons as the basic units of
drawing; and the processing of commands.

· OpenGL Graphic Control describes which graphic operations OpenGL controls and which it does not
control.

· Execution Model discusses the client/server model for interpreting OpenGL commands.
· Basic OpenGL Operation gives a high-level description of how OpenGL processes data and produces

a corresponding image in the frame buffer.

Primitives and Commands
OpenGL draws primitives¾points, line segments, or polygons¾subject to several selectable modes. You
can control modes independently of one another. That is, setting one mode doesn't affect whether other
modes are set (although many modes may interact to determine what eventually ends up in the frame
buffer). To specify primitives, set modes, and perform other OpenGL operations, you issue commands in
the form of function calls.

Primitives are defined by a group of one or more vertices. A vertex defines a point, an endpoint of a line,
or a corner of a polygon where two edges meet. Data (consisting of vertex coordinates, colors, normals,
texture coordinates, and edge flags) is associated with a vertex, and each vertex and its associated data
are processed independently, in order, and in the same way. The only exceptions to this rule are cases in
which the group of vertices must be clipped so that a particular primitive fits within a specified region. In
this case, vertex data may be modified and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received, although there may be an
indeterminate delay before a command takes effect. This means that each primitive is drawn completely
before any subsequent command takes effect. It also means that state-querying commands return data
that is consistent with complete execution of all previously issued OpenGL commands.

OpenGL Graphic Control
OpenGL provides you with fairly direct control over the fundamental operations of two- and three-
dimensional graphics. This includes specification of such parameters as transformation matrices, lighting
equation coefficients, antialiasing methods, and pixel update operators. However, it doesn't provide you
with a means for describing or modeling complex geometric objects. Thus, the OpenGL commands you
issue specify how a certain result should be produced (what procedure should be followed) rather than
what exactly that result should look like. That is, OpenGL is fundamentally procedural rather than
descriptive. To fully understand how to use OpenGL, it helps to know the order in which it carries out its
operations.

Execution Model
The model for interpretation of OpenGL commands is client/server. Application code (the client) issues
commands, which are interpreted and processed by OpenGL (the server). The server may or may not
operate on the same computer as the client. In this sense, OpenGL is network-transparent. A server can
maintain several OpenGL contexts, each of which is an encapsulated OpenGL state. A client can connect
to any one of these contexts. The required network protocol can be implemented by augmenting an
already existing protocol or by using an independent protocol. No OpenGL commands are provided for
obtaining user input.

The window system that allocates frame buffer resources ultimately controls the effects of OpenGL
commands on the frame buffer. The window system:

· Determines which portions of the frame buffer OpenGL may access at any given time.
· Communicates to OpenGL how those portions are structured.

Therefore, there are no OpenGL commands to configure the frame buffer or initialize OpenGL. Frame
buffer configuration is done outside of OpenGL in conjunction with the window system; OpenGL
initialization takes place when the window system allocates a window for OpenGL rendering.

Basic OpenGL Operation
The following abstract, high-level block diagram illustrates how OpenGL processes data. In the diagram,
commands enter from the left and proceed through what can be considered a processing pipeline. Some
commands specify geometric objects to be drawn, and others control how the objects are handled during
the various processing stages.

{ewc msdncd, EWGraphic, bsd23540 0 /a "SDK.WMF"}

The processing stages in basic OpenGL operation are as follows:

· Display list. Rather than having all commands proceed immediately through the pipeline, you can
choose to accumulate some of them in a display list for processing later.

· Evaluator. The evaluator stage of processing provides an efficient way to approximate curve and
surface geometry by evaluating polynomial commands of input values.

· Per-vertex operations and primitive assembly. OpenGL processes geometric primitives¾points,
line segments, and polygons¾all of which are described by vertices. Vertices are transformed and lit,
and primitives are clipped to the viewport in preparation for rasterization.

· Rasterization. The rasterization stage produces a series of frame-buffer addresses and associated
values using a two-dimensional description of a point, line segment, or polygon. Each fragment so
produced is fed into the last stage, per-fragment operations.

· Per-fragment operations. These are the final operations performed on the data before it's stored as
pixels in the frame buffer.
Per-fragment operations include conditional updates to the frame buffer based on incoming and
previously stored z values (for z buffering) and blending of incoming pixel colors with stored colors, as
well as masking and other logical operations on pixel values.

Data can be input in the form of pixels rather than vertices. Data in the form of pixels, such as might
describe an image for use in texture mapping, skips the first stage of processing described above and
instead is processed as pixels, in the pixel operations stage. Following pixel operations, the pixel data is
either:

· Stored as texture memory, for use in the rasterization stage.
· Rasterized, with the resulting fragments merged into the frame buffer just as if they were generated

from geometric data.

OpenGL Processing Pipeline
Many OpenGL functions are used specifically for drawing objects such as points, lines, polygons, and
bitmaps. Other functions control the way that some of this drawing occurs (such as those that enable
antialiasing or texturing). Still other functions are specifically concerned with frame buffer manipulation.
The topics in this section describe how all the OpenGL functions work together to create the OpenGL
processing pipeline. This section also takes a closer look at the stages in which data is actually
processed, and ties these stages to OpenGL functions.

The following illustration shows a detailed block diagram of the OpenGL processing pipeline. For most of
the pipeline, you can see three vertical arrows between the major stages. These arrows represent
vertices and the two primary types of data that can be associated with vertices: color values and texture
coordinates. Also note that vertices are assembled into primitives, then into fragments, and finally into
pixels in the frame buffer. This progression is discussed in more detail in Vertices, Primitives, Fragments,
and Pixels.

{ewc msdncd, EWGraphic, bsd23541 0 /a "SDK.WMF"}

OpenGL Function Names
Many OpenGL functions are variations of each other, differing mostly in the data types of their arguments.
Some functions differ in the number of related arguments and whether those arguments can be specified
as a vector or must be specified separately in a list. For example, if you use the glVertex2f function, you
need to supply x- and y-coordinates as 32-bit floating-point numbers; with glVertex3sv, you must supply
an array of three short (16-bit) integer values for x, y, and z. Only the base name of the function is used in
the topics that follow. An asterisk indicates that there may be more to the actual function name than is
shown. For example, glVertex* stands for all the variations of the function you use to specify vertices:
glVertex2d, glVertex2f, glVertex2i, and so on.

The effect of an OpenGL function can vary depending on whether certain modes are enabled. For
example, you need to enable lighting if the lighting-related functions are to produce a properly lit object.
To enable a particular mode, use the glEnable function and supply the appropriate constant to identify the
mode (for example, GL_LIGHTING). See glEnable for a complete list of the modes that can be enabled.
Modes are disabled with glDisable.

Vertices
The topics in this section discuss the OpenGL functions that perform per-vertex operations to the
processing stages shown in OpenGL Processing Pipeline.

Input Data
The OpenGL pipeline requires you to input several types of data:

· Vertices. Vertices describe the shape of the desired geometric object. To specify vertices, use
glVertex* functions in conjunction with glBegin and glEnd to create a point, line, or polygon. You can
also use glRect to describe an entire rectangle at one time.

· Edge flag. By default, all edges of polygons are boundary edges. Use glEdgeFlag* to explicitly set
the edge flag.

· Current raster position. Specified with glRasterPos*, the current raster position is used to
determine raster coordinates for pixel- and bitmap-drawing operations.

· Current normal. A normal vector associated with a particular vertex determines how a surface at that
vertex is oriented in three-dimensional space; this in turn affects how much light that particular vertex
receives. Use glNormal* to specify a normal vector.

· Current color. The color of a vertex, together with the lighting conditions, determine the final, lit color.
Color is specified with glColor* if in RGBA mode, or with glIndex* if in color-index mode.

· Current texture coordinates. Specified with glTexCoord*, texture coordinates determine the
location in a texture map to associate with a vertex of an object.

Note    When glVertex* is called, the resulting vertex inherits the current edge flag, normal, color,
and texture coordinates. Therefore, glEdgeFlag*, glNormal*, glColor*, and glTexCoord* must be
called before glVertex*, if they are to affect the resulting vertex.

Matrix Transformations
Vertices and normals are transformed by the modelview and projection matrices before they're used to
produce an image in the frame buffer. Use functions such as glMatrixMode, glMultMatrix*, glRotate*,
glTranslate*, and glScale* to compose the desired transformations. Or specify matrices directly with
glLoadMatrix* and glLoadIdentity. Use glPushMatrix and glPopMatrix to save and restore modelview
and projection matrices on their respective stacks.

Setting Lighting and Coloring
In addition to specifying colors and normal vectors, you can define the desired lighting conditions with
glLight* and glLightModel*, and the desired material properties with glMaterial*. Related functions for
controlling how lighting calculations are performed include glShadeModel, glFrontFace, and
glColorMaterial.

Generating Texture Coordinates
Rather than explicitly supplying texture coordinates, you can have OpenGL generate them as a function
of other vertex data using glTexGen*. After the texture coordinates have been specified or generated,
they are transformed by the texture matrix. This matrix is controlled with the same functions that are used
for matrix transformations (see Matrix Transformations).

Assembling Primitives
Once all necessary calculations have been performed, vertices are assembled into primitives¾points, line
segments, or polygons¾together with the relevant edge flag, color, and texture information for each
vertex.

Vertices Reference
glBegin
glColor*
glColorMaterial
glEdgeFlag*
glEnd
glFrontFace
glIndex
glLight*
glLightModel*
glLoadIdentity
glLoadMatrix*
glMaterial*
glMatrixMode
glMultMatrix*
glNormal*
glPopMatrix
glPushMatrix
glRasterPos*
glRect*
glRotate*
glScale*
glShadeModel
glTexCoord*
glTexGen*
glTranslate*
glVertex*

Primitives
Primitives are converted to pixel fragments in the following steps:

· Primitives are clipped appropriately.
· Necessary corresponding adjustments are made to the color and texture data, and the relevant

coordinates are transformed to window coordinates.
· Rasterization converts the clipped primitives to pixel fragments.

Clipping
Clipping occurs in two steps:

1. Application-specific clipping. Immediately after primitives are assembled, they're clipped in eye
coordinates as necessary for any clipping planes you've defined with glClipPlane. (OpenGL requires
support for at least six such application-specific clipping planes.)

2. View volume clipping. Primitives are transformed by the projection matrix into clip coordinates and
clipped by the corresponding view volume. This matrix can be controlled by the matrix transformation
functions (see Matrix Transformations) but is typically specified by glFrustum or glOrtho.

Points, line segments, and polygons are handled differently during clipping:

· Points are either retained in their original state (if they're inside the clip volume) or discarded (if
they're outside the clip volume).

· If portions of line segments or polygons are outside the clip volume, new vertices are generated at the
clip points.

· For polygons, an entire edge may need to be constructed between new vertices generated at the clip
points.

· For line segments and polygons that are clipped, the edge flag, color, and texture information is
assigned to all new vertices.

Transforming to Window Coordinates
Before clip coordinates are converted to window coordinates, they are divided by the value of w to yield
normalized device coordinates. The viewport transformation applied to these normalized coordinates
produces window coordinates. You control the viewport, which determines the area of the on-screen
window that displays an image, with glDepthRange and glViewport.

Rasterizing
Rasterizing is the process by which a primitive is converted to a two-dimensional image. Each point of this
image contains such information as color, depth, and texture data. A point and its associated information
are called a fragment. The current raster position, as specified with glRasterPos*, is used in various
ways during this stage for drawing pixels and bitmaps. Different issues arise when rasterizing points, line
segments, and polygons. In addition, pixel rectangles and bitmaps need to be rasterized.

With OpenGL you control rasterizing using the following functions:

· Primitives. Control how primitives are rasterized using functions that determine dimensions and
stipple patterns: glPointSize, glLineWidth, glLineStipple, and glPolygonStipple. Control how the
front and back faces of polygons are rasterized with glCullFace, glFrontFace, and glPolygonMode.

· Pixels. Several functions control pixel storage and transfer modes. The function glPixelStore*
controls the encoding of pixels in client memory, and glPixelTransfer* and glPixelMap* control how
pixels are processed before being placed in the frame buffer. Specify a pixel rectangle with
glDrawPixels; control its rasterization with glPixelZoom.

· Bitmaps. Bitmaps are rectangles of zeros and ones specifying a particular pattern of fragments to be
produced. Each of these fragments has the same associated data. The glBitmap function specifies a
bitmap.

· Texture Memory. When texturing is enabled, texturing maps a portion of a specified texture image
onto each primitive. This mapping is accomplished by using the color of the texture image at the
location indicated by a fragment's texture coordinates to modify the fragment's RGBA color. Specify a
texture image with glTexImage2D or glTexImage1D. The glTexParameter* and glTexEnv* functions
control how texture values are interpreted and applied to a fragment.

· Fog. To blend a fog color with a rasterized fragment's post-texturing color, use a blending factor that
depends on the distance between the eyepoint and the fragment. Use glFog* to specify the fog color
and blending factor.

Primitives Reference
glBitmap
glClipPlane
glCullFace
glDepthRange
glDrawPixels
glFog*
glFrontFace
glFrustum
glLineStipple
glLineWidth
glOrtho
glPixelMap*
glPixelStore*
glPixelTransfer*
glPixelZoom
glPointSize
glPolygonMode
glPolygonStipple
glRasterPos*
glTexEnv*
glTexImage1D
glTexImage2D
glTexParameter*
glViewport

Fragments
A fragment produced by rasterization modifies the corresponding pixel in the frame buffer only if it passes
the following tests:

· Pixel ownership test
· Scissor test
· Alpha test
· Stencil test
· Depth-buffer test

If it passes, the fragment's data can replace the existing frame buffer values, or you can combine it with
existing data in the frame buffer, depending on the state of certain modes. You can combine the fragment
with data in the frame buffer by:

· Blending
· Dithering
· Logical operations

Pixel Ownership Test
The pixel ownership test determines whether the current OpenGL context owns the pixel in the frame
buffer corresponding to a particular fragment. If so, the fragment proceeds to the next test. If not, the
windowing system determines whether the fragment is discarded or whether any further fragment
operations will be performed with that fragment. With this test, the windowing system controls OpenGL's
behavior when, for example, an OpenGL window is obscured.

Scissor Test
The glScissor test specifies an arbitrary screen-aligned rectangle outside of which fragments will be
discarded.

Alpha Test
The alpha test (performed only in RGBA mode) discards a fragment depending on the outcome of a
comparison between the fragment's alpha value and a constant reference value. You specify the
comparison function and reference value with glAlphaFunc.

Stencil Test
The stencil test conditionally discards a fragment based on the outcome of a comparison between the
value in the stencil buffer and a reference value. The glStencilFunc function specifies the comparison
function and the reference value. Whether the fragment passes or fails the stencil test, the value in the
stencil buffer is modified according to the instructions specified with glStencilOp.

Depth-buffer Test
The depth-buffer test discards a fragment if a depth comparison fails; glDepthFunc specifies the
comparison function. If stenciling is enabled, the result of the depth comparison also affects the stencil
buffer update value.

Blending
Blending combines a fragment's R, G, B, and A values with those stored in the frame buffer at the
corresponding location. The blending, which is performed only in RGBA mode, depends on the alpha
value of the fragment and that of the corresponding currently stored pixel; it may also depend on the RGB
values. You control blending with glBlendFunc, with which you indicate the source and destination
blending factors.

Dithering
If dithering is enabled, a dithering algorithm is applied to the fragment's color or color-index value. This
algorithm depends only on the fragment's value and its x and y window coordinates.

Logical Operations
A logical operation can be applied between the fragment and the value stored at the corresponding
location in the frame buffer; the result replaces the current frame buffer value. You choose the desired
logical operation with glLogicOp. Logical operations are performed only on color indexes, never on
RGBA values.

Fragments Reference
glAlphaFunc
glBlendFunc
glDepthFunc
glLogicOp
glScissor
glStencilFunc
glStencilOp

Pixels
Fragments are converted to pixels in the frame buffer. The frame buffer is organized into a set of logical
buffers¾the color, depth, stencil, and accumulation buffers. The color buffer itself consists of a front left,
front right, back left, back right, and some number of auxiliary buffers. You can issue functions to control
these buffers, and directly read or copy pixels from them. (Note that the particular OpenGL context you're
using may not provide all these buffers.)

Frame Buffer Operations
To select the buffer into which color values are written, use glDrawBuffer. You use four different functions
to mask the writing of bits to each of the logical frame buffers after all per-fragment operations have been
performed:

glIndexMask
glColorMask
glDepthMask
glStencilMask

The glAccum function controls the operation of the accumulation buffer. Finally, glClear sets every pixel
in a specified subset of the buffers to the value specified with glClearColor, glClearIndex, glClearDepth,
glClearStencil, or glClearAccum.

Reading or Copying Pixels
You can read pixels from the frame buffer into memory, encode them in various ways, and store the
encoded result in memory with glReadPixels. In addition, you can copy a rectangle of pixel values from
one region of the frame buffer to another with glCopyPixels. The function glReadBuffer controls which
color buffer the pixels are read or copied from.

Pixels Reference
glAccum
glClear
glClearAccum
glClearColor
glClearDepth
glClearIndex
glClearStencil
glColorMask
glCopyPixels
glDepthMask
glDrawBuffer
glIndexMask
glReadBuffer
glReadPixels
glStencilMask

Using Evaluators
The OpenGL evaluator functions allow you to use a polynomial mapping to produce vertices, normals,
texture coordinates, and colors. These calculated values are then passed on to the processing pipeline as
if they had been directly specified. The evaluator functions are also the basis for the NURBS (Non-
Uniform Rational B-Spline) functions, which allow you to define curves and surfaces, as described in
OpenGL Utility library.

The first step in using evaluators is to define the appropriate one- or two-dimensional polynomial mapping
using glMap*. You can then specify and evaluate the domain values for this map in one of two ways:

· Define a series of evenly spaced domain values to be mapped using glMapGrid and then evaluate a
rectangular subset of that grid with glEvalMesh. A single point of the grid can be evaluated using
glEvalPoint.

· Explicitly specify a desired domain value as an argument, which evaluates the maps at that value.

Evaluators Reference
glEvalCoord
glEvalMesh
glEvalPoint
glMap*
glMapGrid

Performing Selection and Feedback
Selection, feedback, and rendering are mutually exclusive modes of operation. Rendering is the normal,
default mode during which fragments are produced by rasterization.

In selection and feedback modes, no fragments are produced; therefore, no frame buffer modification
occurs. In selection mode, you can determine which primitives will be drawn into some region of a
window; in feedback mode, information about primitives that will be rasterized is fed back to the
application.

You select among these three modes with glRenderMode.

Selection
Selection returns the current contents of the name stack, which is an array of names with integer values.
You assign the names and build the name stack within the modeling code that specifies the geometry of
objects you want to draw. Then, in selection mode, whenever a primitive intersects the clip volume, a
selection hit occurs. The hit record, which is written into the selection array you've supplied with
glSelectBuffer, contains information about the contents of the name stack at the time of the hit.

Note    Call glSelectBuffer before you put OpenGL into selection mode with glRenderMode. The
entire contents of the name stack aren't guaranteed to be returned until you call glRenderMode to
take OpenGL out of selection mode.

Manipulate the name stack with glInitNames, glLoadName, glPushName, and glPopName. You can
also use gluPickMatrix for selection.

Feedback
In feedback mode, each primitive to be rasterized generates a block of values that is copied into the
feedback array. Supply this array with glFeedbackBuffer, which you must call before putting OpenGL
into feedback mode. Each block of values begins with a code indicating the primitive type, followed by
values that describe the primitive's vertices and associated data. Entries are also written for bitmaps and
pixel rectangles. Values are not guaranteed to be written into the feedback array until you call
glRenderMode to take OpenGL out of feedback mode. You can use glPassThrough to supply a marker
that is returned in feedback mode as if it were a primitive.

Selection and Feedback Reference
Selection and Feedback
glRenderMode

Selection
glInitNames
glLoadName
glPopName
glPushName
glSelectBuffer
gluPickMatrix

Feedback
glFeedbackBuffer
glPassThrough

Using Display Lists
A display list is a group of OpenGL functions that has been stored for subsequent execution. The
glNewList function begins the creation of a display list, and glEndList ends it. With few exceptions,
OpenGL functions called between glNewList and glEndList are appended to the display list. (See
glNewList for a list of the functions that you can't store and execute from within a display list.) To trigger
the execution of a list or set of lists, use glCallList or glCallLists and supply the identifying number of a
particular list or lists. You manage the indexes used to identify display lists with glGenLists, glListBase,
and glIsList. To delete a set of display lists, use glDeleteLists.

Display Lists Reference
glCallList
glCallLists
glDeleteLists
glEndList
glGenLists
glIsList
glListBase
glNewList

Managing Modes and Execution
The effect of many OpenGL functions depends on whether a particular mode is in effect. The glEnable
and glDisable functions set such modes; glIsEnabled determines whether a particular mode is set.

You can control the execution of previously issued OpenGL functions with glFinish, which forces all such
functions to finish, or glFlush, which ensures that all such functions will be completed in a finite time.

In a particular implementation of OpenGL, you may be able to control certain behaviors with hints by
using glHint. Such behaviors are the quality of color and texture coordinate interpolation; the accuracy of
fog calculations; and the sampling quality of antialiased points, lines, or polygons.

Modes and Execution Reference
glDisable
glEnable
glFinish
glFlush
glHint
glIsEnabled

Obtaining State Information
OpenGL maintains many state variables that affect the behavior of many functions. Some of these
variables have specialized query functions:

glGetClipPlane glGetPixelMap glGetTexImage
glGetLight glGetPolygonStipple glGetTexLevelPara

meter
glGetMap glGetTexEnv glGetTexParameter
glGetMaterial glGetTexGen

To obtain the value of other state variables, use glGetBooleanv, glGetDoublev, glGetFloatv, or
glGetIntegerv, as appropriate. See glGet for information about how to use these functions. Other query
functions you might want to use are glGetError, glGetString, and glIsEnabled. (See Handling Errors for
more information about functions related to error handling.) To save and restore sets of state variables,
use glPushAttrib and glPopAttrib.

Using the Query Functions
There are four query functions for obtaining simple state variables and one for determining whether a
particular state is enabled or disabled:

glGetBooleanv
glGetIntegerv
glGetFloatv
glGetDoublev
glIsEnabled

The prototypes for the query functions are:

void glGetBooleanv(GLenum pname, GLboolean *params);

void glGetIntegerv(GLenum pname, GLint *params);

void glGetFloatv(GLenum pname, GLfloat *params);

void glGetDoublev(GLenum pname, GLdouble *params);

Respectively, the query functions obtain Boolean, integer, floating-point, or double-precision state
variables. The pname parameter is a symbolic constant indicating the state variable to return, and params
is a pointer to an array of the indicated type in which to place the returned data. The possible values for
pname are listed in OpenGL State Variables. A type conversion is performed if necessary to return the
desired variable as the requested data type.

The prototype for glIsEnabled is:

GLboolean glIsEnabled(GLenum cap);

If the mode specified by cap is enabled, glIsEnabled returns GL_TRUE. If the mode specified by cap is
disabled, glIsEnabled returns GL_FALSE. The possible values for cap are listed in OpenGL State
Variables.

Other specialized functions return specific state variables. To find out when to use these functions, see
OpenGL State Variables and the OpenGL Reference Manual. For more information on OpenGL's error
handling facility and the glGetError function, see Error Handling.

The functions that return specific state variables are:

glGetClipPlane
glGetError
glGetLight
glGetMap
glGetMaterial
glGetPixelMap
glGetPolygonStipple
glGetString
glGetTexEnv
glGetTexGen
glGetTexImage
glGetTexLevelParameter
glGetTexParameter

Error Handling
When OpenGL detects an error, it records a current error code. The function that caused the error is
ignored, so it has no effect on the OpenGL state or on the frame-buffer contents. (If the error recorded
was GL_OUT_OF_MEMORY, however, the results of the function are undefined.) Once recorded, the
current error code isn't cleared until you call the glGetError query function, which returns the current error
code.

Implementations of OpenGL may return multiple current error codes, each of which remains set until
queried. The glGetError function returns GL_NO_ERROR once you've queried all the current error codes
or if there is no error. Therefore, if you obtain an error code, call glGetError until GL_NO_ERROR is
returned to be sure you've discovered all the errors. For the list of error codes, see OpenGL error codes.

You can use the gluErrorString GLU function to obtain a descriptive string corresponding to the error
code passed in. For more information on gluErrorString, see Handling Errors.

Note    GLU functions often return error values if an error is detected. Also, the OpenGL Utility library
defines the error codes GLU_INVALID_ENUM, GLU_INVALID_VALUE, and
GLU_OUT_OF_MEMORY, which have the same meaning as the related OpenGL error codes.

OpenGL Error Codes
OpenGL includes the following error codes:

Error Code Description
GL_INVALID_ENUM GLenum argument out of range.
GL_INVALID_VALUE Numeric argument out of range.
GL_INVALID_OPERATION Operation illegal in current state.
GL_STACK_OVERFLOW Function would cause a stack

overflow.
GL_STACK_UNDERFLOW Function would cause a stack

underflow.
GL_OUT_OF_MEMORY Not enough memory left to execute

function.

Saving and Restoring Sets of State Variables
You can save and restore the values of a collection of state variables on an attribute stack with the
glPushAttrib and glPopAttrib functions. The attribute stack has a depth of at least 16. To obtain the
actual depth, use GL_MAX_ATTRIB_STACK_DEPTH with glGetIntegerv. Pushing a full stack or popping
an empty one generates an error.

It's generally faster to use glPushAttrib and glPopAttrib than to get and restore the values yourself.
Some values might be pushed and popped in the hardware, and saving and restoring them can be
expensive. Also, if you're operating on a remote client, all the attribute data must be transferred across
the network connection and back as it's saved and restored. However, your OpenGL implementation
keeps the attribute stack on the server, avoiding unnecessary network delays.

The prototype of glPushAttrib is:

void glPushAttrib(GLbitfield mask);

Using glPushAttrib saves all the attributes indicated by bits in mask by pushing them onto the attribute
stack. For a list of the possible mask bits you can logically OR together to save any combination of
attributes, see Attribute Groups. Each bit corresponds to a collection of individual state variables. For
example, GL_LIGHTING_BIT refers to all the state variables related to lighting, which include the current
material color; the ambient, diffuse, specular, and emitted light; a list of the lights that are enabled; and
the directions of the spotlights. When you call glPopAttrib, all those variables are restored. To find out
exactly which attributes are saved for particular mask values, see OpenGL State Variables.

OpenGL State Variables
The following topics list the names of state variables that can be queried:

State Variables for Current Values and Associated Data
Transformation State Variables
Coloring State Variables
Lighting State Variables
Rasterization State Variables
Texturing State Variables
Pixel Operations
Framebuffer Control State Variables
Pixel State Variables
Evaluator State Variables
Hint State Variables
Implementation-Dependent State Variables
Implementation-Dependent Pixel-Depth State Variables
Miscellaneous State Variables

For each variable, the topic lists a description, attribute group, initial or minimum value, and the suggested
glGet* function to use for obtaining it.

State variables that you can obtain using glGetBooleanv, glGetIntegerv, glGetFloatv, or glGetDoublev
are listed with just one of these functions¾the one that is most appropriate for the type of data to be
returned. You cannot obtain these state variables using glIsEnabled. However, you can obtain state
variables for which glIsEnabled is listed as the query function with glGetBooleanv, glGetIntegerv,
glGetFloatv, and glGetDoublev. You can obtain state variables for which any other function is listed as
the query function only by using that function. If no attribute group is listed, the variable doesn't belong to
any group. All state variables that you can query, except those that are implementation dependent, have
initial values. To determine the initial value of a variable for which no initial value is listed, see that
variable's reference topic.

State Information Reference
The following list contains the functions that get state information.

For a list of the reference pages for the state variables, see OpenGL State Variables.

glGet
glGetBooleanv
glGetClipPlane
glGetDoublev
glGetError
glGetFloatv
glGetIntegerv
glIsEnabled
glGetLight
glGetMap
glGetMaterial
glGetPixelMap
glGetPolygonStipple
glGetString
glGetTexEnv
glGetTexGen
glGetTexImage
glGetTexLevelParameter
glGetTexParameter
glPopAttrib
glPushAttrib

OpenGL Utility library
The OpenGL Utility (GLU) library contains several groups of functions that complement the core OpenGL
interface by providing support for auxiliary features. These utility functions make use of core OpenGL
functions, so any OpenGL implementation is guaranteed to support the utility functions.

Note    The prefix for Utility library functions is "glu" rather than "gl."

For more detailed descriptions of these functions, see the OpenGL Reference Manual. This section
groups related GLU functions, as follows:

· Initializing
· Manipulating Images for Use in Texturing
· Transforming Coordinates
· Tessellating Polygons
· Using Callback Functions
· Using Tessellation Objects
· Specifying Callbacks
· Specifying the Polygon to Be Tessellated
· Rendering Simple Surfaces
· Using NURBS Curves and Surfaces
· Handling Errors   

Initializing
With GLU version 1.1 or later, gluGetString returns the version number of the GLU library or the version
number and any vendor-specific GLU extension calls.

The prototype of gluGetString is:

const GLubyte *gluGetString(GLenum name);

Manipulating Images for Use in Texturing
The OpenGL Utility library (GLU) provides image scaling and automatic mipmapping functions to simplify
the specification of texture images. The gluScaleImage function scales a specified image to an accepted
texture size; you can pass the resulting image to OpenGL as a texture. The automatic mipmapping
functions, gluBuild1DMipmaps and gluBuild2DMipmaps, create mipmapped texture images from a
specified image and pass them to glTexImage1D and glTexImage2D, respectively.

Transforming Coordinates
The OpenGL Utility library (GLU) provides several commonly used matrix transformation functions. You
can set up a two-dimensional orthographic viewing region with gluOrtho2D, a standard perspective view
volume using gluPerspective, or a view volume that is centered on a specified eyepoint with gluLookAt.
Each of these functions creates the desired matrix and applies it to the current matrix using glMultMatrix.

The gluPickMatrix function simplifies selection of a picking matrix by creating a matrix that restricts
drawing to a small region of the viewport. If you re-render the scene in selection mode after this matrix
has been applied, all objects that would be drawn near the cursor will be selected, and information about
them will be stored in the selection buffer. For more information about selection mode, see Performing
Selection and Feedback.

To determine where in the window an object is being drawn, use gluProject, which converts the specified
object coordinates objx, objy, and objz into window coordinates using modelMatrix, projMatrix, and
viewport. The result is stored in winx, winy, and winz. If the function succeeds, the return value is
GL_TRUE. If the function fails, the return value is GL_FALSE.

The gluUnProject function performs the inverse conversion: it transforms the specified window
coordinates winx, winy, and winz into object coordinates using modelMatrix, projMatrix, and viewport. The
result is stored in objx, objy, and objz. If the function succeeds, the return value is GL_TRUE. If the
function fails, the return value is GL_FALSE.

Tessellating Polygons
OpenGL can directly display only simple convex polygons. A polygon is simple if:

· The edges intersect only at vertices.
· There are no duplicate vertices.
· Exactly two edges meet at any vertex.

To display simple nonconvex polygons or simple polygons containing holes, you must first triangulate the
polygons (subdivide them into convex polygons). Such subdivision is called tessellation. GLU provides a
collection of functions that perform tessellation. Note that the GLU tessellation functions can't handle
nonsimple polygons; there is no standard OpenGL method to handle such polygons.

Because tessellation is often required and can be rather tricky, this section describes the GLU tessellation
functions in detail. These functions take as input arbitrary simple polygons that might include holes, and
they return some combination of triangles, triangle meshes, and triangle fans. If you don't want to deal
with meshes or fans, you can specify that the tessellation functions return only triangles. However, mesh
and fan information improves performance. The polygon tessellation functions triangulate a concave
polygon with one or more contours.

To use polygon tessellation
1. Create a tessellation object with gluNewTess.
2. Use gluTessCallBack to define callback functions you will use to process the triangles generated by

the tessellator.
3. With gluBeginPolygon, gluTessVertex, gluNextContour, and gluEndPolygon, specify the polygon

with holes or the concave polygon to be tessellated.
When the polygon description is complete, the tessellation facility invokes your callback functions as
necessary.
You can destroy unneeded tessellation objects with gluDeleteTess.

For more information on saving the tessellation data, see Using Callback Functions.

Using Callback Functions
The GLU callback functions, gluBeginPolygon, gluTessVertex, gluNextContour, and gluEndPolygon,
are similar to the OpenGL polygon functions.

They typically save the data for the triangles, triangle meshes, and triangle fans in user-defined data
structures or in OpenGL display lists. To render the polygons, other code traverses the data structures or
calls the display lists. Although the callback functions could call OpenGL functions to display polygons
directly, this is usually not done, as tessellation can be computationally expensive. It's a good idea to save
the data if there is any chance that you want to display it again. The GLU tessellation functions are
guaranteed never to return any new vertices, so interpolation of vertices, texture coordinates, or colors is
never required.

Using Tessellation Objects
As a complex polygon is being described and tessellated, it requires associated data, such as the
vertices, edges, and callback functions. All this data is tied to a single tessellation object. To tessellate a
polygon, you first use the gluNewTess function which creates a new tessellation object and returns a
pointer to it. A null pointer is returned if the function fails.

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess.

You can reuse a single tessellation object for all your tessellations. This object is required only because
library functions may need to do their own tessellations, and they should be able to do so without
interfering with any tessellation that your program is performing. Multiple tessellation objects are also
useful if you want to use different sets of callbacks for different tessellations. Typically, however, you
allocate a single tessellation object and use it for all the tessellations. There's no real need to free it,
because it uses a small amount of memory. On the other hand, if you're writing a library function that uses
GLU tessellation, be careful to free any tessellation objects you create.

Specifying Callbacks
You can specify up to five callback functions for a tessellation. Any functions that you do not specify are
not called during the tessellation, and you do not get any information they might have returned. You
specify the callback functions with gluTessCallback.

The gluTessCallback function associates the callback function fn with the tessellation object tessobj. The
type of the callback is determined by the parameter type, which can be GLU_BEGIN, GLU_EDGE_FLAG,
GLU_VERTEX, GLU_END, or GLU_ERROR. The five possible callback functions have the following
prototypes.

Callback Function Prototype
GLU_BEGIN void begin(GLenum type);
GLU_EDGE_FLAG void edgeFlag(GLboolean flag);
GLU_VERTEX void vertex(void *data);
GLU_END void end(void);
GLU_ERROR void error(GLenum errno);

To change a callback function, call gluTessCallback with the new function. To eliminate a callback
function without replacing it with a new one, pass gluTessCallback a null pointer for the appropriate
function.

As tessellation proceeds, the callback functions are called in a manner similar to the way you would use
the OpenGL functions glBegin, glEdgeFlag, glVertex, and glEnd.

The GLU_BEGIN callback function is invoked with one of three possible parameters:

· GL_TRIANGLE_FAN
· GL_TRIANGLE_STRIP
· GL_TRIANGLES

After calling the GLU_BEGIN callback function, and before calling the callback function associated with
GLU_END, some combination of the GLU_EDGE_FLAG and GLU_VERTEX callbacks is invoked. The
associated vertices and edge flags are interpreted exactly as they are in OpenGL between
glBegin(GL_TRIANGLE_FAN), glBegin(GL_TRIANGLE_STRIP), or glBegin(GL_TRIANGLES) and the
matching glEnd.

Because edge flags make no sense in a triangle fan or triangle strip, if there is a callback function
associated with GLU_EDGE_FLAG, the GLU_BEGIN callback is called only with GL_TRIANGLES. The
GLU_EDGE_FLAG callback function works analogously to the OpenGL glEdgeFlag function.

If there is an error during the tessellation, the error callback function is invoked. The error callback
function is passed a GLU error number. You can obtain a character string describing the error with the
gluErrorString function.

Specifying the Polygon to Be Tessellated
You specify a polygon (possibly containing holes) to be tessellated using:

gluBeginPolygon
gluTessVertex
gluNextContour
gluEndPolygon

For polygons without holes, the specification process is exactly as in OpenGL:

1. Start with gluBeginPolygon.
2. Call gluTessVertex for each vertex in the boundary.
3. End the polygon with a call to gluEndPolygon.

If a polygon consists of multiple contours, including holes and holes within holes, you specify the contours
one after the other, preceding each by gluNextContour. When you call gluEndPolygon, it signals the
end of the final contour and starts the tessellation. You can omit the call to gluNextContour before the
first contour. The gluBeginPolygon function begins the specification of a polygon to be tessellated and
associates a tessellation object, tessobj, with it. The callback functions to be used are those that you bind
to the tessellation object with gluTessCallback.

The gluTessVertex function specifies a vertex in the polygon to be tessellated. Call gluTessVertex for
each vertex in the polygon. The function's tessobj parameter is the tessellation object to use, v contains
the three-dimensional vertex coordinates, and data is an arbitrary pointer that is sent to the callback
associated with GLU_VERTEX. Typically, data contains vertex data, texture coordinates, color
information, or whatever else the application may require.

The gluNextContour function marks the beginning of the next contour when multiple contours make up
the boundary of the polygon to be tessellated.The function's type parameter can be GLU_EXTERIOR,
GLU_INTERIOR, GLU_CCW, GLU_CW, or GLU_UNKNOWN. These constants serve only as hints to the
tessellation. If you get them right, the tessellation might go faster. If you get them wrong, they're ignored,
and the tessellation still works.

For a polygon with holes, one contour is the exterior contour, and the others are interior. If you don't call
gluNextContour immediately after gluBeginPolygon, the first contour is assumed to be of type
GLU_EXTERIOR.

GLU_CW and GLU_CCW indicate clockwise- and counterclockwise-oriented polygons. Choosing which
are clockwise and which are counterclockwise is arbitrary in three dimensions, but in any plane, there are
two different orientations; use the GLU_CW and GLU_CCW types consistently. Use GLU_UNKNOWN if
you don't know which to use.

The gluEndPolygon function indicates the end of the polygon specification. It also indicates that the
tessellation can begin using the tessellation object tessobj.

Rendering Simple Surfaces
The GLU library includes a set of functions for drawing various simple surfaces (spheres, cylinders, disks,
and parts of disks) in a variety of styles and orientations. These functions are described in detail in the
OpenGL Reference Manual.

To render simple surfaces
1. Create a quadric object with gluNewQuadric.

To destroy this object when you're finished with it, use gluDeleteQuadric.
2. Specify the desired rendering style, as listed below, with the appropriate function (unless you're

satisfied with the default values):
· Whether surface normals should be generated, and if so, whether there should be one normal per

vertex or one normal per face: gluQuadricNormals
· Whether texture coordinates should be generated: gluQuadricTexture
· Which side of the quadric should be considered the outside and which the inside:

gluQuadricOrientation
· Whether the quadric should be drawn as a set of polygons, lines, or points: gluQuadricDrawStyle

3. After specifying the rendering style, invoke the rendering function for the desired type of quadric
object: gluSphere, gluCylinder, gluDisk, or gluPartialDisk.
If an error occurs during rendering, the error-handling function you've specified with
gluQuadricCallBack is invoked.

Use the *Radius, height, and similar arguments, rather than the glScale function, to scale the quadrics,
so that you don't have to renormalize any unit-length normals that are generated. To force lighting
calculations at a finer granularity, especially if the material specularity is high, set the loops and stacks
arguments to values other than 1.

Using NURBS Curves and Surfaces
Non-Uniform Rational B-Spline (NURBS) functions provide general and powerful descriptions of curves
and surfaces in two and three dimensions, converting the curves and surfaces to OpenGL evaluators. The
NURBS functions can represent geometry in many computer-aided mechanical design systems. They can
render curves and surfaces in a variety of styles, and they can automatically handle adaptive subdivision
that tessellates the domain into smaller triangles in regions of high curvature and near silhouette edges.
NURBS functions fall into the following categories.

To manage a NURBS object, use:

· gluNewNurbsRenderer (create a NURBS object)
· gluDeleteNurbsRenderer (deletes a NURBS object)
· gluNurbsCallback (establishes an error-handling function)

To specify the desired curves, use:

· gluBeginCurve
· gluNurbsCurve
· gluEndCurve

To specify the desired surfaces, use:

· gluBeginSurface
· gluNurbsSurface
· gluEndSurface

You can also specify a trimming region, which defines a subset of the NURBS surface domain to be
evaluated so you can create surfaces that have smooth boundaries or that contain holes.

To specify the trimming region, use:

· gluBeginTrim
· gluPwlCurve
· gluNurbsCurve
· gluEndTrim

As with quadric objects, you can control how NURBS curves and surfaces are rendered. You can
determine:

· Whether to discard a curve or surface whose control polyhedron lies outside the current viewport.
· The maximum length (in pixels) of edges of polygons used to render curves and surfaces.
· Whether you will take the projection matrix, modelview matrix, and viewport from the OpenGL server

or supply them explictly with gluLoadSamplingMatrices.

Use gluNurbsProperty to set these properties, or use the default values. You can query a NURBS object
about its rendering style with gluGetNurbsProperty.

Handling Errors
The gluErrorString function retrieves error strings that correspond to OpenGL or GLU error codes. The
currently defined OpenGL error codes are described in glGetError. The GLU error codes are listed in
gluErrorString, gluTessCallback, gluQuadricCallback, and gluNurbsCallback.

The return value for gluErrorString is a pointer to a descriptive string that corresponds to the OpenGL,
GLU, or GLX error number passed in the errorCode parameter. The defined error codes are described in
the OpenGL Reference Manual along with the function or function that can generate them.

OpenGL on Windows NT and
Windows 95

The Microsoft implementation of OpenGL in the Microsoft® Windows NT® and Windows® 95 operating
systems is an implementation of the industry-standard OpenGL three-dimensional (3-D) graphics
software interface with which programmers create high-quality still and animated 3-D color images. This
overview describes the Windows NT and Windows 95 implementation of OpenGL.

Components
Microsoft's implementation of OpenGL in Windows NT and Windows 95 includes the following
components:

· The full set of current OpenGL commands
OpenGL contains a library of core functions for 3-D graphics operations. These basic functions are
used to manage object shape description, matrix transformation, lighting, coloring, texture, clipping,
bitmaps, fog, and antialiasing. The names for these core functions have a "gl" prefix.
Many of the OpenGL commands have several variants, which differ in the number and type of their
parameters. Counting all the variants, there are more than 300 OpenGL commands.

· The OpenGL Utility (GLU) library
This library of auxiliary functions complements the core OpenGL functions. The commands manage
texture support, coordinate transformation, polygon tessellation, rendering spheres, cylinders and
disks, NURBS (Non-Uniform Rational B-Spline) curves and surfaces, and error handling.

· The OpenGL Programming Guide Auxiliary library
This is a simple, platform-independent library of functions for managing windows, handling input
events, drawing classic 3-D objects, managing a background process, and running a program. The
window management and input routines provide a base level of functionality with which you can
quickly get started programming in OpenGL.
Do not use them, however, in a production application. Here are some reasons for this warning:
· The message loop is in the library code.
· There is no way to add handlers for additional WM* messages.
· There is very little support for logical palettes.
The library is described and used in the OpenGL Programming Guide.

· The WGL functions
This set of functions connects OpenGL to the Windows NT and Windows 95 windowing system. The
functions manage rendering contexts, display lists, extension functions, and font bitmaps. The WGL
functions are analogous to the GLX extensions that connect OpenGL to the X Window System. The
names for these functions have a "wgl" prefix.

· New Win32 functions for pixel formats and double buffering
These functions support per-window pixel formats and double buffering (for smooth image changes)
of windows. These new functions apply only to OpenGL graphics windows.

Generic Implementation and Hardware Implementations
This overview discusses the current generic implementation of OpenGL in Windows NT and Windows 95,
which is the Microsoft Windows NT and Windows 95 software implementation of OpenGL. Hardware
manufacturers may enhance parts of OpenGL in their drivers and may support some features not
supported by the generic implementation.

Limitations
The generic implementation has the following limitations:

· Printing.
You can print an OpenGL image directly to a printer using metafiles only. For more information, see
Printing an OpenGL Image.

· OpenGL and GDI graphics cannot be mixed in a double-buffered window.
An application can directly draw both OpenGL graphics and GDI graphics into a single-buffered
window, but not into a double-buffered window.

· There are no per-window hardware color palettes.
Windows NT and Windows 95 have a single system hardware color palette, which applies to the
whole screen. An OpenGL window cannot have its own hardware palette, but can have its own logical
palette. To do so, it must become a palette-aware application. For more information, see OpenGL
Color Modes and Windows Palette Management.

· There is no direct support for the Clipboard, dynamic data exchange (DDE), or OLE.
A window with OpenGL graphics does not directly support these Windows NT and Windows 95
capabilities. There are workarounds, however, for using the Clipboard. For more information, see
Copying an OpenGL Image to the Clipboard.

· The Inventor 2.0 C++ class library is not included.
The Inventor class library, built on top of OpenGL, provides higher-level constructs for programming
3-D graphics. It is not included in the current version of Microsoft's implementation of OpenGL for
Windows NT and Windows 95.

· There is no support for the following pixel format features: stereoscopic images, alpha bitplanes, and
auxiliary buffers.
There is, however, support for several ancillary buffers including: stencil buffer, accumulation buffer,
back buffer (double buffering), overlay and underlay plane buffer, and depth (z-axis) buffer.

Guide to Documentation
The documentation set for OpenGL in Windows NT and Windows 95 includes five elements.

The first two elements are the official OpenGL books: the OpenGL Reference Manual and the OpenGL
Programming Guide.   

Note    The OpenGL Reference Manual and the OpenGL Programming Guide are not included with
the Win32® application programming interface SDK.

The OpenGL Reference Manual includes an overview of how OpenGL works and a set of detailed
reference pages. The reference pages cover all the 115 distinct OpenGL functions, as well as the 43
functions in the OpenGL Utility (GLU) library.

The OpenGL Programming Guide explains how to create graphics programs using OpenGL. It includes
discussions of the following major topics:

· Drawing geometric shapes
· Pixels, bitmaps, fonts, and images
· Viewing and matrix transformations
· Texture mapping
· Display lists
· Advanced composite techniques
· Color
· Evaluators and NURBS
· Lighting
· Selection and feedback
· Blending, antialiasing, and fog
· Advanced techniques

In addition, the OpenGL Programming Guide contains appendixes that discuss the OpenGL Utility library
and the OpenGL Programming Guide Auxiliary library.

The third documentation element is this overview. It describes the Windows NT and Windows 95
implementation of OpenGL and provides an overview of its components. It discusses the concepts of
rendering contexts, pixel formats, and buffers; the WGL functions that connect OpenGL to the Windows
NT and Windows 95 windowing systems; and the Win32 functions that support per-window pixel formats
and double buffering of windows for OpenGL graphics windows. The WGL functions and the Win32
functions are specific to the Windows NT and Windows 95 implementation of OpenGL.

The fourth documentation element is the set of reference pages for the WGL functions, the Win32
functions just mentioned, and the PIXELFORMATDESCRIPTOR data structure.

The fifth documentation element is Porting to OpenGL. It discusses moving existing OpenGL code from
other environments into Windows NT and Windows 95.

Rendering Contexts
An OpenGL rendering context is a port through which all OpenGL commands pass. Every thread that
makes OpenGL calls must have a current rendering context. Rendering contexts link OpenGL to the
Windows NT and Windows 95 windowing systems.

An application specifies a Windows NT or Windows 95 device context when it creates a rendering
context. This rendering context is suitable for drawing on the device that the specified device context
references. In particular, the rendering context has the same pixel format as the device context. For more
information, see Rendering Context Functions.

Despite this relationship, a rendering context is not the same as a device context. A device context
contains information pertinent to the graphics component (GDI) of Windows NT and Windows 95. A
rendering context contains information pertinent to OpenGL. A device context must be explicitly specified
in a GDI call. A rendering context is implicit in an OpenGL call. You should set a device context's pixel
format before creating a rendering context.

A thread that makes OpenGL calls must have a current rendering context. If an application makes
OpenGL calls from a thread that lacks a current rendering context, nothing happens; the call has no
effect. An application commonly creates a rendering context, sets it as a thread's current rendering
context, and then calls OpenGL functions. When it finishes calling OpenGL functions, the application
uncouples the rendering context from the thread, and then deletes the rendering context. A window can
have multiple rendering contexts drawing to it at one time, but a thread can have only one current, active
rendering context.

A current rendering context has an associated device context. That device context need not be the same
device context as that used when the rendering context was created, but it must reference the same
device and have the same pixel format.

A thread can have only one current rendering context. A rendering context can be current to only one
thread.

Rendering Context Functions
Five WGL functions manage rendering contexts, as described in the following table.

WGL Function Description
wglCreateContext Creates a new rendering context.
wglMakeCurrent Sets a thread's current rendering context.
wglGetCurrentContext Obtains a handle to a thread's current

rendering context.
wglGetCurrentDC Obtains a handle to the device context

associated with a thread's current rendering
context.

wglDeleteContext Deletes a rendering context.

The wglCreateContext function takes a device context handle as its parameter and returns a rendering
context handle. The created rendering context is suitable for drawing on the device referenced by the
device context handle. In particular, its pixel format is the same as the device context's pixel format. After
you create a rendering context, you can release or dispose of the device context. See Device Contexts for
more details on creating, obtaining, releasing, and disposing of a device context.

Note    The device context sent to wglCreateContext must be a display device context, a memory
device context, or a color printer device context that uses four or more bits per pixel. The device
context cannot be a monochrome printer device context.

The wglMakeCurrent function takes a rendering context handle and a device context handle as
parameters. All subsequent OpenGL calls made by the thread are made through that rendering context,
and are drawn on the device referenced by that device context. The device context does not have to be
the same one passed to wglCreateContext when the rendering context was created, but it must be on
the same device and have the same pixel format. The call to wglMakeCurrent creates an association
between the supplied rendering context and device context. You cannot release or dispose of the device
context associated with a current rendering context until after you make the rendering context not current.

Once a thread has a current rendering context, it can make OpenGL graphics calls. All calls must pass
through a rendering context. Nothing happens if you make OpenGL graphics calls from a thread that
lacks a current rendering context.

The wglGetCurrentContext function takes no parameters, and returns a handle to the calling thread's
current rendering context. If the thread has no current rendering context, the return value is NULL.

When you obtain a handle to the device context associated with a thread's current rendering context by
calling wglGetCurrentDC, the association is created when a rendering context is made current.

You can break the association between a current rendering context and a thread by calling
wglMakeCurrent with either of two handles:

· A null rendering context handle
· A handle other than the one originally called

After calling wglMakeCurrent with the rendering context handle parameter set to NULL, the calling
thread has no current rendering context. The rendering context is released from its connection to the
thread, and the rendering context's association to a device context ends. OpenGL flushes all drawing
commands, and may release some resources. No OpenGL drawing will be done until the next call to
wglMakeCurrent, because the thread can make no OpenGL graphics calls until it regains a current
rendering context.

The second way to break the association between a rendering context and a thread is to call
wglMakeCurrent with a different rendering context. After such a call, the calling thread has a new current
rendering context, the former current rendering context is released from its connection to the thread, and
the former current rendering context's association to a device context ends.

The wglDeleteContext function takes a single parameter, the handle to the rendering context to be
deleted. Before calling wglDeleteContext, make the rendering context not current by calling
wglMakeCurrent, and delete or release the associated device context by calling DeleteDC or
ReleaseDC as appropriate.

It is an error for a thread to delete a rendering context that is another thread's current rendering context.
However, if a rendering context is the calling thread's current rendering context, wglDeleteContext
flushes all OpenGL drawing commands and makes the rendering context not current before deleting it. In
this case, relying on wglDeleteContext to make a rendering context not current requires the programmer
to delete or release the associated device context.

Pixel Formats
A pixel format specifies several properties of an OpenGL drawing surface. Some of the properties
specified by a pixel format are:

· Whether the pixel buffer is single- or double-buffered.
· Whether the pixel data is in RGBA or color-index form.
· The number of bits used to store color data.
· The number of bits used for the depth (z-axis) buffer.
· The number of bits used for the stencil buffer.
· The number of overlay and underlay planes.
· Various visibility masks.

Microsoft's implementation of OpenGL for Windows NT and Windows 95 uses the
PIXELFORMATDESCRIPTOR data structure to convey pixel format data. The structure's members
specify the preceding properties and several others.   

A given device context can support several pixel formats. Windows NT and Windows 95 identify the pixel
formats that a device context supports with consecutive one-based index values (1, 2, 3, 4, and so on). A
device context can have just one current pixel format, chosen from the set of pixel formats it supports.

Each window has its own current pixel format in OpenGL in Windows NT and Windows 95. This means,
for example, that an application can simultaneously display RGBA and color-index OpenGL windows, or
single- and double-buffered OpenGL windows. This per-window pixel format capability is limited to
OpenGL windows.

Typically, you obtain a device context, set the device context's pixel format, and then create an OpenGL
rendering context suitable for that device.

Note    You set the pixel format before creating a rendering context because the rendering context
inherits the device context's pixel format.

Pixel Format Functions
The following Win32 functions manage pixel formats.

Win32 Function Description
ChoosePixelFormat Obtains the device context's pixel

format that is the closest match to a
specified pixel format.

SetPixelFormat Sets a device context's current pixel
format to the pixel format specified by
a pixel format index.

GetPixelFormat Obtains the pixel format index of a
device context's current pixel format.

DescribePixelFormat Given a device context and a pixel
format index, fills in a
PIXELFORMATDESCRIPTOR data
structure with the pixel format's
properties.

GetEnhMetaFilePixelFormatRetrieves pixel format information for
an enhanced metafile.

The ChoosePixelFormat function returns a one-based pixel format index that identifies the best match
from the device context's supported pixel formats.

The SetPixelFormat function identifies the desired format using a one-based pixel format index.
Typically, you call ChoosePixelFormat to find a best-match pixel format, and then call SetPixelFormat
with the result of ChoosePixelFormat.

If you call SetPixelFormat for a device context that references a window, SetPixelFormat also changes
the pixel format of the window. Setting the pixel format of a window more than once can lead to significant
complications for the Window Manager and for multithread applications, so it is not allowed. You can set
the pixel format of a window only one time; after that, the window's pixel format cannot be changed.

The GetPixelFormat function returns a one-based pixel format index.

The DescribePixelFormat function takes the following as parameters:

· A handle to a device context
· A pixel format index
· A pointer to a PIXELFORMATDESCRIPTOR data structure

The DescribePixelFormat function returns with the members of PIXELFORMATDESCRIPTOR
appropriately set.

The GetEnhMetaFilePixelFormat function returns the size of a metafile's pixel format and retrieves the
pixel format information of the metafile.

Front, Back, and Other Buffers
OpenGL stores and manipulates pixel data in a frame buffer. The frame buffer consists of a set of logical
buffers: color, depth, accumulation, and stencil buffers. The color buffer itself consists of a set of logical
buffers; this set can include a front-left, a front-right, a back-left, a back-right, and some number of
auxiliary buffers. A particular pixel format or OpenGL implementation may not supply all of these buffers.
For example, the current version of Microsoft's implementation of OpenGL in Windows NT and Windows
95 does not support stereoscopic images, so a pixel format cannot have left and right color buffers. In
addition, the current version does not support auxiliary buffers. For more information on OpenGL buffers
and the OpenGL functions that operate on them, see the OpenGL Reference Manual and the OpenGL
Programming Guide.

Microsoft's implementation of OpenGL in Windows NT and Windows 95 supports double buffering of
images. This is a technique in which an application draws pixels to an off-screen buffer, and then, when
that image is ready for display, copies the contents of the off-screen buffer to an on-screen buffer. Double
buffering enables smooth image changes, which are especially important for animated images.

Two color buffers are available to applications that use double buffering: a front buffer and a back buffer.
By default, drawing commands are directed to the back buffer (the off-screen buffer), while the front buffer
is displayed on the screen. When the off-screen buffer is ready for display, you call SwapBuffers, and
Windows NT or Windows 95 copies the contents of the off-screen buffer to the on-screen buffer.

The generic implementation uses a device-independent bitmap (DIB) as the back buffer and the screen
display as the front buffer. Hardware devices and their drivers may use different approaches.

Double buffering is a pixel-format property. To request double buffering for a pixel format, set the
PFD_DOUBLEBUFFER flag in the PIXELFORMATDESCRIPTOR data structure in a call to
ChoosePixelFormat.

The OpenGL core function, glDrawBuffer, selects buffers for writing and clearing.

Buffer Functions
To copy the contents of an off-screen buffer to an on-screen buffer, call SwapBuffers. The SwapBuffers
function takes a handle to a device context. The current pixel format for the specified device context must
include a back buffer. By default, the back buffer is off-screen, and the front buffer is on-screen.

Note    The SwapBuffers function does not really swap the contents of the two buffers, but rather
copies the contents of one buffer to another. The contents of the off-screen buffer are undefined after
a call to SwapBuffers. Thus, the result of two consecutive calls to SwapBuffers is undefined.

The following illustration shows how the contents of the buffers are copied when calling SwapBuffers.

{ewc msdncd, EWGraphic, bsd23542 0 /a "SDK.WMF"}

Several OpenGL core functions also manage buffers. The glDrawBuffer function is the one most relevant
to double buffering; it specifies the frame buffer or buffers that OpenGL draws into.

The following functions also affect buffers:

glReadBuffer
glReadPixels
glCopyPixels
glAccum
glColorMask
glDepthMask
glIndexMask
glStencilMask
glClearAccum
glClearColor
glClearDepth
glClearIndex
glClearStencil

Fonts and Text
Microsoft's implementation of OpenGL in Windows NT and Windows 95 supports GDI graphics in a
single-buffered OpenGL window. It does not support GDI graphics in a double-buffered OpenGL window.
Thus, you can call only the standard GDI font and text functions to draw text in a single-buffered OpenGL
window; you cannot call those functions to draw text in a double-buffered OpenGL window.

There is a workaround for this restriction on text in double-buffered windows: build OpenGL display lists
for bitmap images of characters, and then execute those display lists to draw characters. There are three
main steps in this process:

1. Select a font for a device context, setting the font's properties as desired.
2. Create a set of bitmap display lists based on the glyphs in the device context's font, one display list

for each glyph that the application will draw.
3. Draw each glyph in a string, using those bitmap display lists.

To create the display lists, call the wglUseFontBitmaps and wglUseFontOutlines functions. To draw
characters in a string using those display lists, call glCallLists.

To create applications that are easy to localize and that use resources sparingly, the creation and storage
of these glyph image display lists must be managed carefully. Many languages, unlike English, have
alphabets whose character codes range over a relatively large set of values.

Font and Text Functions
Two functions can be used to manage fonts and text.

Win32 Function Description
wglUseFontBitmaps Creates a set of character bitmap display lists.

Characters come from a specified device
context's current font. Characters are
specified as a consecutive run within the
font's glyph set.

wglUseFontOutlines Creates a set of display lists, based on the
glyphs of the currently selected outline font of
a device context, for use with the current
rendering context. The display lists are used
to draw 3-D characters of TrueType fonts.

The wglUseFontBitmaps and wglUseFontOutlines functions take a handle to a device context, and use
that device context's current font as a source for the bitmaps. It is therefore necessary to set the device
context's font and the font's properties before calling wglUseFontBitmaps or wglUseFontOutlines.

The wglUseFontBitmaps and wglUseFontOutlines functions also take a parameter that turns the first
glyph in the font into a bitmap display list, and a parameter that specifies how many glyphs to turn into
display lists. The function then creates display lists for the specified consecutive run of glyphs. For
example:

· To create a set of 224 bitmap display lists for all of the Windows NT and Windows 95 character set
glyphs, set these two parameters to 32 and 224, respectively.

· To create a set of 256 bitmap display lists for all of the OEM character set glyphs, set these two
parameters to 0 and 256, respectively.

· To create a single bitmap display list for any single character set glyph, set the second of these
parameters to 1.

The wglUseFontBitmaps and wglUseFontOutlines functions represent a null glyph in a font with an
empty display list.

The display lists created by a call to wglUseFontBitmaps or wglUseFontOutlines are automatically
numbered consecutively.

After calling the wglUseFontBitmaps or wglUseFontOutlines function, call glCallLists to draw a string
of characters. See Drawing Text in a Double-Buffered OpenGL Window for sample code. In this context,
glCallLists uses each character in a string as an index into the array of consecutively numbered display
lists created by wglUseFontBitmaps or wglUseFontOutlines.

When you finish drawing text, call the glDeleteLists function to release the contiguous set of display lists
created by wglUseFontBitmaps and wglUseFontOutlines.

OpenGL Color Modes and Windows Palette Management
Microsoft's implementation of OpenGL in Windows NT and Windows 95 supports two color pixel data
modes: RGBA and color-index modes. Windows NT and Windows 95 provide two analogous ways of
handling color: true color and palette management.

True-color devices, able to accept 16, 24, or more bits of color information per pixel, can display tens of
thousands, tens of millions, or more colors simultaneously. Complexities arise, however, when an
application has to manage RGBA or color-index mode on a palette-type device. Palette-type devices,
such as a 256-color VGA display, are limited in the number of colors they can display simultaneously.
Applications must handle a number of tricky details to successfully use palette-type devices. Because
color-index mode programs don't use a hardware palette, they are more difficult to use with true-color
devices than programs using the RGBA mode.

If you are unfamiliar with true-color devices or the Palette Manager, refer to the articles "Palette
Awareness," "The Palette Manager: How and Why," and "Using True-Color devices" on the Microsoft
Developer Network Development Library compact discs for an introduction to the essentials of Windows
NT and Windows 95 color management.

Palettes and the Palette Manager
The Windows NT and Windows 95 Palette Manager, which is part of the GDI, specifically targets 8-bit
display adapters with a hardware palette of 256 color entries. Pixels on the screen are stored as an 8-bit
index into the hardware palette. Each entry in the hardware palette usually defines a 24-bit color (8 each
of red, green, and blue).

The Palette Manager maintains a system palette that is a copy of the hardware palette. The system
palette is divided into two sections: 20 reserved colors and the remaining 236 colors, which you can set
using the Palette Manager.

A default 20-color logical palette is selected and realized into a device context. You can create and use a
new logical palette. To change the system palette, select and realize the logical palette you created.

You'll probably create a logical palette to specify the colors you want displayed in your OpenGL
application. Using certain GDI calls, you can temporarily replace most of the system palette with a logical
palette. Using a logical palette, you can define pixel colors for the GDI using either the RGBA or the color-
index mode. The maximum size of a logical palette is 256 colors for 8-bit devices and 4,096 colors on a
true-color device (16, 24, and 32 bits).

For more information on the RGBA and color-index modes, see RGBA Mode and Windows Palette
Management and OpenGL Color Modes and Windows Palette Management.

Palette Awareness
Your application must respond to the WM_PALETTECHANGED, WM_QUERYNEWPALETTE, and
WM_ACTIVATE messages to be aware of and use palettes. Design your application to select and realize
palettes in response to these messages.

For more information on palettes and palette awareness, see the articles "Palette Awareness," and "The
Palette Manager: How and Why" on the Microsoft Developer Network Development Library compact
discs.

Reading Color Values from the Frame Buffer
When using functions that read back color values from the frame buffer, be aware of the differences
between reading RGBA values and color-index values on true-color devices and on palette-based
devices.

On a true-color device:

· RGBA values are limited to the channel in the device.
· Color-index values are stored as RGBA values in the frame buffer. When using these values, you

must perform an inverse translation from RGBA to the logical palette index. If two logical indexes
have the same RGBA values, the wrong index can be returned.

On a palette-based device:

· RGBA values are read from an index in the system palette. The logical index is obtained from an
inverse table, and the RGBA components are extracted.

· Color-index values are read from an index into the system palette and an inverse table is used to get
the logical palette index.

Choosing Between RGBA and Color-Index Mode
In general, use the RGBA mode for your OpenGL applications; it provides more flexibility than the color-
index mode for effects such as shading, lighting, color mapping, fog, antialiasing, and blending.

Consider using the color-index mode in the following cases:

· If you have a limited number of bitplanes available; the color-index mode can produce less-coarse
shading than the RGBA mode.

· If you are not concerned about using "real" colors; for example, using several colors in a topographic
map to designate relative elevations.

· When you're porting an existing application that uses color-index mode extensively.
· When you want to use color-map animation and effects in your application. (This is not possible on

true-color devices.)

RGBA Mode and Windows Palette Management
While most GDI applications tend to use color-indexing with logical palettes, the RGBA mode is usually
preferable for OpenGL applications. It works better than color mapping for several effects, such as
shading, lighting, fog, and texture mapping.

The RGBA mode uses red, green, and blue (R, G, and B) color values that together specify the color of
each pixel in the display. The R, G, and B values specify the intensity of each color (red, green, and blue);
the values range from 0.0 (least intense) to 1.0 (most intense). The number of bits for each component
varies depending on the hardware used (2, 3, 5, 6, and 8 bits are possible).The color displayed is a result
of the sum of the three color values. If all three values are 0.0, the result is black. If the three values are
all 1.0, the result is white. Other colors are a result of a combination of values of R, G, and B that fall
between 0 and 1.0. The A (alpha) bit isn't used to specify color.

The standard super-VGA display uses palettes with eight color-bits per pixel. The eight bits are read from
the buffer and used as an index in the system palette to get the R, G, and B values. When an RGB
palette is selected and realized in a device context, OpenGL can render using the RGBA mode.

Because there are eight color-bits per pixel, OpenGL emphasizes the use of a three-three-two RGBA
palette. "Three-three-two" refers to how the color-bit data is handled by the hardware or physical palette.
Red (R) and green (G) are each specified by three bits; blue (B) is specified by two bits. Red is the least-
significant bit and blue is the most-significant bit.

You determine the colors of your application's logical palette with PALETTEENTRY structures. Typically
you create an array of PALETTEENTRY structures to specify the entire palette entry table of the logical
palette.

RGBA Mode Palette Sample
The following code fragment shows how you can create a three-three-two RGBA palette.

/*
 * win8map.c - program to create an 8-bit RGB color map for
 * use with OpenGL
 *
 * For OpenGL RGB rendering you need to know red, green, & blue
 * component bit sizes and positions. On 8 bit palette devices you need
 * to create a logical palette that has the correct RGBA values for all
 * 256 possible entries. This program creates an 8 bit RGBA color cube
 * with a default gamma of 1.4
 *
 * Unfortunately, because the standard 20 colors in the system palette
 * cannot be changed,if you select this palette into an 8-bit display
 * DC, you will not realize all of the logical palette. The program
 * changes some of the entries in the logical palette to match enties in
 * the system palette using a least-squares calculation to find which
 * entries to replace
 *
 * Note: Three bits for red & green and two bits for blue; red is the
 * least-significant bit and blue is the most-significant bit
 */

#include <stdio.h>
#include <math.h>

#define DEFAULT_GAMMA 1.4F

#define MAX_PAL_ERROR (3*256*256L)

struct colorentry {
 unsigned char red;
 unsigned char green;
 unsigned char blue;
};

struct rampentry {
 struct colorentry color;
 long defaultindex;
 unsigned char flags;
};

struct defaultentry {
 struct colorentry color;
 long rampindex;
 unsigned char flags;
};

/* values for flags */
#define EXACTMATCH 0x01
#define CHANGED 0x02 /* one of the default entries is close
*/

/*
 * These arrays hold bit arrays with a gamma of 1.0
 * used to convert n bit values to 8-bit values
 */

unsigned char threeto8[8] = {
 0, 0111>>1, 0222>>1, 0333>>1, 0444>>1, 0555>>1, 0666>>1, 0377
};

unsigned char twoto8[4] = {
 0, 0x55, 0xaa, 0xff
};

unsigned char oneto8[2] = {
 0, 255
};

struct defaultentry defaultpal[20] = {
 { 0, 0, 0 },
 { 0x80,0, 0 },
 { 0, 0x80,0 },
 { 0x80,0x80,0 },
 { 0, 0, 0x80 },
 { 0x80,0, 0x80 },
 { 0, 0x80,0x80 },
 { 0xC0,0xC0,0xC0 },

 { 192, 220, 192 },
 { 166, 202, 240 },

 { 255, 251, 240 },
 { 160, 160, 164 },

 { 0x80,0x80,0x80 },
 { 0xFF,0, 0 },
 { 0, 0xFF,0 },
 { 0xFF,0xFF,0 },
 { 0, 0, 0xFF },
 { 0xFF,0, 0xFF },
 { 0, 0xFF,0xFF },
 { 0xFF,0xFF,0xFF }
};

struct rampentry rampmap[256];

void
gammacorrect(double gamma)
{
 int i;
 unsigned char v, nv;
 double dv;

 for (i=0; i<8; i++) {
 v = threeto8[i];
 dv = (255.0 * pow(v/255.0, 1.0/gamma)) + 0.5;
 nv = (unsigned char)dv;
 printf("Gamma correct %d to %d (gamma %.2f)\n", v, nv, gamma);
 threeto8[i] = nv;
 }
 for (i=0; i<4; i++) {
 v = twoto8[i];
 dv = (255.0 * pow(v/255.0, 1.0/gamma)) + 0.5;
 nv = (unsigned char)dv;
 printf("Gamma correct %d to %d (gamma %.2f)\n", v, nv, gamma);
 twoto8[i] = nv;
 }
 printf("\n");
}

main(int argc, char *argv[])
{
 long i, j, error, min_error;
 long error_index, delta;
 double gamma;
 struct colorentry *pc;

 if (argc == 2)
 gamma = atof(argv[1]);
 else
 gamma = DEFAULT_GAMMA;

 gammacorrect(gamma);

 /* First create a 256 entry RGB color cube */

 for (i = 0; i < 256; i++) {
 /* BGR: 2:3:3 */
 rampmap[i].color.red = threeto8[(i&7)];
 rampmap[i].color.green = threeto8[((i>>3)&7)];
 rampmap[i].color.blue = twoto8[(i>>6)&3];
 }

 /* Go through the default palette and find exact matches */
 for (i=0; i<20; i++) {
 for(j=0; j<256; j++) {
 if ((defaultpal[i].color.red == rampmap[j].color.red) &&
 (defaultpal[i].color.green == rampmap[j].color.green) &&
 (defaultpal[i].color.blue == rampmap[j].color.blue)) {

 rampmap[j].flags = EXACTMATCH;
 rampmap[j].defaultindex = i;
 defaultpal[i].rampindex = j;
 defaultpal[i].flags = EXACTMATCH;
 break;
 }
 }
 }

 /* Now find close matches */
 for (i=0; i<20; i++) {
 if (defaultpal[i].flags == EXACTMATCH)
 continue; /* skip entries w/ exact matches */
 min_error = MAX_PAL_ERROR;

 /* Loop through RGB ramp and calculate least square error */
 /* if an entry has already been used, skip it */
 for(j=0; j<256; j++) {
 if (rampmap[j].flags != 0) /* Already used */
 continue;

 delta = defaultpal[i].color.red - rampmap[j].color.red;
 error = (delta * delta);
 delta = defaultpal[i].color.green - rampmap[j].color.green;
 error += (delta * delta);
 delta = defaultpal[i].color.blue - rampmap[j].color.blue;
 error += (delta * delta);
 if (error < min_error) { /* New minimum? */
 error_index = j;
 min_error = error;
 }
 }
 defaultpal[i].rampindex = error_index;
 rampmap[error_index].flags = CHANGED;
 rampmap[error_index].defaultindex = i;
 }

 /* First print out the color cube */

 printf("Standard 8-bit RGB color cube with gamma %.2f:\n", gamma);
 for (i=0; i<256; i++) {

 pc = &rampmap[i].color;
 printf("%3ld: (%3-D, %3-D, %3-D)\n", i, pc->red,
 pc->green, pc->blue);

 }
 printf("\n");

 /* Now print out the default entries that have an exact match */

 for (i=0; i<20; i++) {
 if (defaultpal[i].flags == EXACTMATCH) {
 pc = &defaultpal[i].color;
 printf("Default entry %2ld exactly matched RGB ramp entry
 %3ld", i, defaultpal[i].rampindex);
 printf(" (%3-D, %3-D, %3-D)\n", pc->red, pc->green, pc->blue);
 }
 }
 printf("\n");

 /* Now print out the closest entries for rest of
 * the default entries */

 for (i=0; i<20; i++) {
 if (defaultpal[i].flags != EXACTMATCH) {
 pc = &defaultpal[i].color;
 printf("Default entry %2ld (%3-D, %3-D, %3-D) is close to ",
 i, pc->red, pc->green, pc->blue);
 pc = &rampmap[defaultpal[i].rampindex].color;
 printf("RGB ramp entry %3ld (%3-D, %3-D, %3-D)\n",
 defaultpal[i].rampindex, pc->red, pc->green, pc->blue);
 }
 }
 printf("\n");

 /* Print out code to initialize a logical palette
 * that will not overflow */

 printf("Here is code you can use to create a logical palette\n");

 printf("static struct {\n");
 printf(" WORD palVersion;\n");
 printf(" WORD palNumEntries;\n");
 printf(" PALETTEENTRY palPalEntries[256];\n");
 printf("} rgb8palette = {\n");
 printf(" 0x300,\n");
 printf(" 256,\n");

 for (i=0; i<256; i++) {
 if (rampmap[i].flags == 0)
 pc = &rampmap[i].color;
 else
 pc = &defaultpal[rampmap[i].defaultindex].color;

 printf(" %3-D, %3-D, %3-D, 0, /* %ld",
 pc->red, pc->green, pc->blue, i);

 if (rampmap[i].flags == EXACTMATCH)
 printf(" - Exact match with default %d",
 rampmap[i].defaultindex);
 if (rampmap[i].flags == CHANGED)
 printf(" - Changed to match default %d",
 rampmap[i].defaultindex);
 printf(" */\n");
 }

 printf("};\n");
 printf("\n * * *\n\n");
 printf(" hpal = CreatePalette((LOGPALETTE *)&rgb8palette);\n");

 return 0;
}

Color-Index Mode and Windows Palette Management
The color-index mode specifies colors in a logical palette with an index to a specific logical-palette entry.
Most GDI programs use color-index palettes, but the RGBA mode works better for OpenGL for several
effects, such as shading, lighting, fog, and texture mapping. If having the truest color isn't critical for your
OpenGL application, you might choose to use the color-index mode (for example, for a topographic map
that uses "false color" to emphasize the elevation gradient).

Color-Index Mode Palette Sample
The following code sets up a PIXELFORMATDESCRIPTOR structure that sets the flag of the iPixelType
member to PFD_TYPE_COLORINDEX. This specifies that the application use a color-index palette.

BOOL bSetupPixelFormat(HDC hdc)
{
 PIXELFORMATDESCRIPTOR pfd, *ppfd;
 int pixelformat;

 ppfd = &pfd;

 ppfd->nSize = sizeof(PIXELFORMATDESCRIPTOR);
 ppfd->nVersion = 1;
 ppfd->dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
 PFD_DOUBLEBUFFER;
 ppfd->dwLayerMask = PFD_MAIN_PLANE;

 /* Set to color-index mode and use the default color palette. */
 ppfd->iPixelType = PFD_TYPE_COLORINDEX;

 ppfd->cColorBits = 8;
 ppfd->cDepthBits = 16;
 ppfd->cAccumBits = 0;
 ppfd->cStencilBits = 0;

 pixelformat = ChoosePixelFormat(hdc, ppfd);

 if ((pixelformat = ChoosePixelFormat(hdc, ppfd)) == 0)
 {
 MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 if (SetPixelFormat(hdc, pixelformat, ppfd) == FALSE)
 {
 MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 return TRUE;
}

Overlay, Underlay, and Main Planes
You can use hardware layer planes (overlay and underlay planes) in your applications. With Windows NT
and Windows 95, pixel formats describe the pixel configurations of a graphics device. Each pixel format
describes the depth and other characteristics of the main color buffers and describes additional buffers
(such as depth, accumulation, stencil, and auxiliary) that the main plane uses. Pixel formats are now
extended to include overlay and underlay buffers.

Layer planes always have a front-left color buffer and also can include front-right and back color buffers.
Each layer plane has a specific rendering context to render into the layer buffers. You cannot use GDI
drawing functions in layer planes.

A window manages the color buffers of layer planes similarly to the way it manages main-plane color
buffers. You can display multiple windows with overlay and/or underlay planes at the same time. You
cannot have free-floating overlay windows that can move over any window in the main drawing plane. In
addition, because it would obscure underlying planes in a window at all times, you cannot use hardware
pop-up planes that have no transparent color.

Each layer plane in a window has an associated palette. You can set the palette of a color-index layer
plane, but the palette of an RGBA color plane is fixed. You must realize the appropriate palette when a
window is in the foreground. Layer planes have a transparent pixel color or index that enables any
underlying layer planes to show through.

You can copy the state of a rendering context to another rendering context in a separate layer plane. You
can also share display lists among rendering contexts in different layer planes.

The following functions are used with layer planes:

wglCopyContext
wglCreateLayerContext
wglDescribeLayerPlane
wglGetLayerPaletteEntries
wglRealizeLayerPalette
wglSetLayerPaletteEntries
wglSwapLayerBuffers

Sharing Display Lists
When you create a rendering context, it has its own display-list space. The wglShareLists function
enables a rendering context to share the display-list space of another rendering context. Any number of
rendering contexts can share a single display-list space.

Extending OpenGL Functions
The OpenGL library supports multiple implementations of its functions. Extension functions supported in
one rendering context aren't necessarily supported in a different rendering context. For a given rendering
context in an application using extension functions, use only the function addresses returned by the
wglGetProcAddress function.

GLX and WGL/Win32
Some of the WGL functions, new Win32 functions, and existing Win32 functions are more or less
analogous to GLX X Window functions. The following list shows GLX functions and their corresponding
WGL/Win32 functions, if available.

GLX Functions WGL/Win32 Functions
glXChooseVisual ChoosePixelFormat
glXCopyContext ¾

glXCreateContext wglCreateContext
glXCreateGLXPixmap CreateDIBitmap/

CreateDIBSection
glXDestroyContext wglDeleteContext
glXDestroyGLXPixmap DeleteObject
glXGetConfig DescribePixelFormat
glXGetCurrentContext wglGetCurrentContext
glXGetCurrentDrawable wglGetCurrentDC
glXIsDirect ¾

glXMakeCurrent wglMakeCurrent
glXQueryExtension GetVersion
glXQueryVersion GetVersion
glXSwapBuffers SwapBuffers
glXUseXFont wglUseFontBitmaps/

wglUseFontOutlines
glXWaitGL ¾

glXWaitX ¾

XGetVisualInfo GetPixelFormat
XCreateWindow CreateWindow/CreateWindowEx and

GetDC/BeginPaint
XSync GdiFlush
¾ SetPixelFormat
¾ wglGetProcAddress
¾ wglShareLists

For more information, refer to the Porting Guide.

Using OpenGL on Windows NT and Windows 95
The following topics explain how to use several features specific to Windows NT and Windows 95 of the
Microsoft implementation of OpenGL.

Header Files
Applications that use:

· The core OpenGL functions must include the header file <GL\GL.H>.
· The OpenGL Utility library must include the header file <GL\GLU.H>.
· The OpenGL Programming Guide auxiliary library must include the header file <GL\GLAUX.H>.
· The WGL functions must include the header file WINDOWS.H.
· The new Win32 functions that support Microsoft's implementation of OpenGL in Windows NT and

Windows 95 must include the header file WINDOWS.H.

Pixel Format Tasks
You set a device-context pixel format prior to creating an OpenGL rendering context.

Choosing and Setting a Best-Match Pixel Format
This topic explains the procedure for matching a device context to a pixel format.

To obtain a device context's best match to a pixel format
1. Specify the desired pixel format in a PIXELFORMATDESCRIPTOR structure.
2. Call ChoosePixelFormat.

The ChoosePixelFormat function returns a pixel format index, which you can then pass to
SetPixelFormat to set the best pixel format match as the device context's current pixel format.

The following code sample shows how to carry out the above steps:

PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
 1, // version number
 PFD_DRAW_TO_WINDOW | // support window
 PFD_SUPPORT_OPENGL | // support OpenGL
 PFD_DOUBLEBUFFER, // double buffered
 PFD_TYPE_RGBA, // RGBA type
 24, // 24-bit color depth
 0, 0, 0, 0, 0, 0, // color bits ignored
 0, // no alpha buffer
 0, // shift bit ignored
 0, // no accumulation buffer
 0, 0, 0, 0, // accum bits ignored
 32, // 32-bit z-buffer
 0, // no stencil buffer
 0, // no auxiliary buffer
 PFD_MAIN_PLANE, // main layer
 0, // reserved
 0, 0, 0 // layer masks ignored
};
HDC hdc;
int iPixelFormat;

// get the device context's best, available pixel format match
iPixelFormat = ChoosePixelFormat(hdc, &pfd);

// make that match the device context's current pixel format
SetPixelFormat(hdc, iPixelFormat, &pfd);

Examining a Device Context's Current Pixel Format
Use the GetPixelFormat and DescribePixelFormat functions to examine a device context's current pixel
format, as shown in the following code fragment:

PIXELFORMATDESCRIPTOR pfd;
HDC hdc;
int iPixelFormat;

// if the device context has a current pixel format ...
if (iPixelFormat = GetPixelFormat(hdc)) {

 // obtain a detailed description of that pixel format
 DescribePixelFormat(hdc, iPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);
 }

Examining a Device's Supported Pixel Formats
The DescribePixelFormat function obtains pixel format data for a device context. It also returns an
integer that is the maximum pixel format index for the device context. The following code sample shows
how to use that result to step through and examine the pixel formats supported by a device:

// local variables
int iMax ;
PIXELFORMATDESCRIPTOR pfd;
int iPixelFormat ;

// initialize a pixel format index variable
iPixelFormat = 1;

// keep obtaining and examining pixel format data...
do {
 // try to obtain some pixel format data
 iMax = DescribePixelFormat(hdc, iPixelFormat, sizeof(pfd), &pfd);

 // if there was some problem with that...
 if (iMax == 0)

 // return indicating failure
 return(FALSE);

 // we have successfully obtained pixel format data

 // let's examine the pixel format data...
 myPixelFormatExaminer (&pfd);
 }

// ...until we've looked at all the device context's pixel formats
while (++iPixelFormat <= iMax);

Rendering Context Tasks
All calls pass through a rendering context. After you set a device context's pixel format, you can create a
rendering context.

Creating a Rendering Context and Making It Current
The following code sample shows how to create an OpenGL rendering context in response to a
WM_CREATE message. Notice that you set up the pixel format before creating the rendering context.
Also notice that in this scenario the device context is not released locally; you release it when the window
is closed, after making the rendering context not current. For more information, see Deleting a Rendering
Context. Finally, notice that you can use local variables for the device context and rendering context
handles, because with the wglGetCurrentContext and wglGetCurrentDC functions you can obtain
handles to those contexts as needed.

// a window has been created, but is not yet visible
case WM_CREATE:
 {
 // local variables
 HDC hdc ;
 HGLRC hglrc ;

 // obtain a device context for the window
 hdc = GetDC(hWnd);

 // set an appropriate pixel format
 myPixelFormatSetupFunction(hdc);

 // if we can create a rendering context ...
 if (hglrc = wglCreateContext(hdc)) {

 // try to make it the thread's current rendering context
 bHaveCurrentRC = wglMakeCurrent(hdc, hglrc) ;

 }

 // perform miscellaneous other WM_CREATE chores ...

 }
 break ;

Making a Rendering Context Not Current
To detach a rendering context from a thread, make it not current. You can do this by calling the
wglMakeCurrent function with the parameters set to NULL. The following is a sample of this simple task:

// detach the current rendering context from the thread
wglMakeCurrent(NULL, NULL);

Deleting a Rendering Context
The following code sample shows how to delete an OpenGL rendering context when an OpenGL window
is closed. It is a continuation of the scenario used in Creating a Rendering Context and Making It Current.

// a window is about to be destroyed
case WM_DESTROY:
 {
 // local variables
 HGLRC hglrc;
 HDC hdc ;

 // if the thread has a current rendering context ...
 if(hglrc = wglGetCurrentContext()) {

 // obtain its associated device context
 hdc = wglGetCurrentDC() ;

 // make the rendering context not current
 wglMakeCurrent(NULL, NULL) ;

 // release the device context
 ReleaseDC (hwnd, hdc) ;

 // delete the rendering context
 wglDeleteContext(hglrc);

 }

Drawing with Double Buffers
Double buffers smooth the transition between one image and another on the screen. Swapping buffers
typically comes at the end of a sequence of drawing commands. By default, the Microsoft implementation
of OpenGL in Windows NT and Windows 95 draws to the off-screen buffer; when drawing is complete,
you call the SwapBuffers function to copy the off-screen buffer to the on-screen buffer. The following
code sample prepares to draw, calls a drawing function, and then copies the completed image on to the
screen if double buffering is available.

void myRedraw(void)
{
 // set up for drawing commands
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45, 1.0, 0.1, 100.0);

 // draw our objects
 myDrawAllObjects(GL_FALSE);

 // if we're double-buffering ...
 if (bDoubleBuffering)

 // ...draw the copied image to the screen
 SwapBuffers(hdc);
}

The following code sample obtains a window device context, renders a scene, copies the image to the
screen (to show the rendering), and then releases the device context.

hdc = GetDC(hwnd);
mySceneRenderingFunction();
SwapBuffers(hdc);
ReleaseDC(hWnd, hdc);

Drawing Text in a Double-Buffered OpenGL Window
You draw text in a double-buffered OpenGL window by creating display lists for selected characters in a
font, and then executing the appropriate display list for each character you want to draw. The following
code sample creates a rendering context, draws a red triangle, and then labels it with text. For this
sample code, we assume that there is a device context, with a font and pixel format.

// create an OpenGL rendering context
hglrc = wglCreateContext(hdc);

// make it this thread's current rendering context
wglMakeCurrent(hdc, hglrc);

// make the color a deep blue hue
glClearColor(0.0F, 0.0F, 0.4F, 1.0F);

// make the shading smooth
glShadeModel(GL_SMOOTH);

// clear the color buffers
glClear(GL_COLOR_BUFFER_BIT);

// specify a red triangle
glBegin(GL_TRIANGLES);
 glColor3f(1.0F, 0.0F, 0.0F);
 glVertex2f(10.0F, 10.0F);
 glVertex2f(250.0F, 50.0F);
 glVertex2f(105.0F, 280.0F);
glEnd();

// create bitmaps for the device context font's first 256 glyphs
wglUseFontBitmaps(hdc, 0, 256, 1000);

// move bottom left, southwest of the red triangle
glRasterPos2f(30.0F, 300.0F);

// set up for a string-drawing display list call
glListBase(1000);

// draw a string using font display lists
glCallLists(12, GL_UNSIGNED_BYTE, "Red Triangle");

// get all those commands to execute
glFlush();

// delete our 256 glyph display lists
glDeleteLists(1000, 256) ;

// make the rendering context not current
wglMakeCurrent (NULL, NULL) ;

// release the device context
ReleaseDC(hdc) ;

// delete the rendering context
wglDeleteContext(hglrc);

Printing an OpenGL Image
You can print OpenGL images rendered in enhanced metafiles. When you render to a printer device
(HDC) it must be backed by a metafile spooler. OpenGL uses memory for depth, color, and other buffers
to store graphics output to a printer. Because typical printer resolution requires a significant amount of
memory to store the graphics output, printing an OpenGL image might require more memory than is
available in the system. To overcome this limitation, the current implementation of OpenGL prints OpenGL
graphics in bands. However, this increases the time it takes to print OpenGL images.

Before you print an OpenGL image, you must call the StartDoc function to complete the initialization of a
printer device context (DC). After calling StartDoc, you can create rendering contexts (HGLRC) to render
to the printer device. If you create rendering contexts before calling StartDoc, there is no way to
determine whether a metafile is spooled.

The following code sample shows how to print an OpenGL image:

HDC hDC;
DOCINFO di;
HGLRC hglrc;

// Call StartDoc to start the document
StartDoc(hDC, &di);

// Prepare the printer driver to accept data
StartPage(hDC);

// Create a rendering context using the metafile DC
hglrc = wglCreateContext (hDCmetafile);

// Do OpenGL rendering operations here
 . . .
wglMakeCurrent(NULL, NULL); // Get rid of rendering context
 . . .
EndPage(hDC); // Finish writing to the page
EndDoc(hDC); // End the print job

For more information on using metafiles, see Enhanced Metafile Operations.

Copying an OpenGL Image to the Clipboard
Although the current version of the Microsoft implementation of OpenGL in Windows NT and Windows 95
does not directly support the Clipboard, you can copy a Windows NT or Windows 95 OpenGL image to
the Clipboard.

To copy an OpenGL image to the Clipboard
1. Draw the image to a memory bitmap or an enhanced metafile.
2. Copy that bitmap to the Clipboard.

Multithread OpenGL Drawing Strategies
The GDI does not support multiple threads. You must use a distinct device context and a distinct
rendering context for each thread. This tends to limit the performance advantages of using multiple
threads with single-processor systems running OpenGL applications. However, there are ways to use
threads with a single processor system to greatly increase performance. For example, you can use a
separate thread to pass OpenGL rendering calls to dedicated 3-D hardware.

Symmetric multiprocessing (SMP) systems can greatly benefit from using multiple threads. An obvious
strategy is to use a separate thread for each processor to handle OpenGL rendering in separate windows.
For example, in a flight-simulation application you could use separate processors and threads to render
the front, back, and side views.

A thread can have only one current, active rendering context. When you use multiple threads and multiple
rendering contexts, you must be careful to synchronize their use. For example, use one thread only to call
SwapBuffers after all threads finish drawing.

Using the Auxiliary Library
Using OpenGL, Silicon Graphics (SGI) created the Auxiliary Library to write simple sample programs for
the OpenGL Programming Guide. The source code for the Auxiliary Library is supplied with the Win32
SDK, along with the OpenGL samples. To understand how the Auxiliary Library was developed from
OpenGL functions and routines, examine the source code. You can use Auxiliary Library functions in your
own programs. For a description of the Auxiliary Library, see the OpenGL Programming Guide.

Reference for Win 32 Extensions to OpenGL
The following sections contain listings of the functions and structures associated with WGL and Win32.

WGL Functions
wglCopyContext
wglCreateContext
wglCreateLayerContext
wglDeleteContext
wglDescribeLayerPlane
wglGetCurrentContext
wglGetCurrentDC
wglGetLayerPaletteEntries
wglGetProcAddress
wglMakeCurrent
wglRealizeLayerPalette
wglSetLayerPaletteEntries
wglShareLists
wglSwapLayerBuffers
wglUseFontBitmaps
wglUseFontOutlines

Win32 Functions
ChoosePixelFormat
DescribePixelFormat
GetEnhMetaFilePixelFormat
GetPixelFormat
SetPixelFormat
SwapBuffers

Structures
GLYPHMETRICSFLOAT
LAYERPLANEDESCRIPTOR
PIXELFORMATDESCRIPTOR
POINTFLOAT

ChoosePixelFormat       

   

[New - Windows 95, OEM Service Release 2]

The ChoosePixelFormat function attempts to match an appropriate pixel format supported by a device
context to a given pixel format specification.

int ChoosePixelFormat(
        HDC    hdc, // device context to search for a best pixel format match
        CONST PIXELFORMATDESCRIPTOR *    ppfd // pixel format for which a best match is sought
     );

Parameters
hdc

Specifies the device context that the function examines to determine the best match for the pixel
format descriptor pointed to by ppfd.

ppfd
Pointer to a PIXELFORMATDESCRIPTOR structure that specifies the requested pixel format. In this
context, the members of the PIXELFORMATDESCRIPTOR structure that ppfd points to are used as
follows:
nSize

Specifies the size of the PIXELFORMATDESCRIPTOR data structure. Set this member to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion
Specifies the version number of the PIXELFORMATDESCRIPTOR data structure. Set this member
to 1.

dwFlags
A set of bit flags that specify properties of the pixel buffer. You can combine the following bit flag
constants by using bitwise-OR.
If any of the following flags are set, the ChoosePixelFormat function attempts to match pixel
formats that also have that flag or flags set. Otherwise, ChoosePixelFormat ignores that flag in
the pixel formats:
PFD_DRAW_TO_WINDOW
PFD_DRAW_TO_BITMAP
PFD_SUPPORT_GDI
PFD_SUPPORT_OPENGL
If any of the following flags are set, ChoosePixelFormat attempts to match pixel formats that also
have that flag or flags set. Otherwise, it attempts to match pixel formats without that flag set:
PFD_DOUBLEBUFFER
PFD_STEREO
If the following flag is set, the function ignores the PFD_DOUBLEBUFFER flag in the pixel formats:
PFD_DOUBLEBUFFER_DONTCARE
If the following flag is set, the function ignores the PFD_STEREO flag in the pixel formats:
PFD_STEREO_DONTCARE

iPixelType
Specifies the type of pixel format for the function to consider:
PFD_TYPE_RGBA
PFD_TYPE_COLORINDEX

cColorBits

Zero or greater.
cRedBits

Not used.
cRedShift

Not used.
cGreenBits

Not used.
cGreenShift

Not used.
cBlueBits

Not used.
cBlueShift

Not used.
cAlphaBits

Zero or greater.
cAlphaShift

Not used.
cAccumBits

Zero or greater.
cAccumRedBits

Not used.
cAccumGreenBits

Not used.
cAccumBlueBits

Not used.
cAccumAlphaBits

Not used.
cDepthBits

Zero or greater.
cStencilBits

Zero or greater.
cAuxBuffers

Zero or greater.
iLayerType

Specifies one of the following layer type values:
PFD_MAIN_PLANE
PFD_OVERLAY_PLANE
PFD_UNDERLAY_PLANE

bReserved
Not used.

dwLayerMask
Not used.

dwVisibleMask
Not used.

dwDamageMask
Not used.

Return Values
If the function succeeds, the return value is a pixel format index (one-based) that is the closest match to
the given pixel format descriptor.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
You must ensure that the pixel format matched by the ChoosePixelFormat function satisfies your
requirements. For example, if you request a pixel format with a 24-bit RGB color buffer but the device
context offers only 8-bit RGB color buffers, the function returns a pixel format with an 8-bit RGB color
buffer.

The following code sample shows how to use ChoosePixelFormat to match a specified pixel format:

PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
 1, // version number
 PFD_DRAW_TO_WINDOW | // support window
 PFD_SUPPORT_OPENGL | // support OpenGL
 PFD_DOUBLEBUFFER, // double buffered
 PFD_TYPE_RGBA, // RGBA type
 24, // 24-bit color depth
 0, 0, 0, 0, 0, 0, // color bits ignored
 0, // no alpha buffer
 0, // shift bit ignored
 0, // no accumulation buffer
 0, 0, 0, 0, // accum bits ignored
 32, // 32-bit z-buffer
 0, // no stencil buffer
 0, // no auxiliary buffer
 PFD_MAIN_PLANE, // main layer
 0, // reserved
 0, 0, 0 // layer masks ignored
 };
 HDC hdc;
 int iPixelFormat;

iPixelFormat = ChoosePixelFormat(hdc, &pfd);

See Also

DescribePixelFormat, GetPixelFormat, SetPixelFormat

DescribePixelFormat       

   

[New - Windows 95, OEM Service Release 2]

The DescribePixelFormat function obtains information about the pixel format identified by iPixelFormat
of the device associated with hdc. The function sets the members of the PIXELFORMATDESCRIPTOR
structure pointed to by ppfd with that pixel format data.

int DescribePixelFormat(
        HDC    hdc, // device context of interest
        int    iPixelFormat, // pixel format selector
        UINT    nBytes, // size of buffer pointed to by ppfd
        LPPIXELFORMATDESCRIPTOR    ppfd // pointer to structure to receive pixel format data
     );

Parameters
hdc

Specifies the device context.
iPixelFormat

Index that specifies the pixel format. The pixel formats that a device context supports are identified by
positive one-based integer indexes.

nBytes
The size, in bytes, of the structure pointed to by ppfd. The DescribePixelFormat function stores no
more than nBytes bytes of data to that structure. Set this value to
sizeof(PIXELFORMATDESCRIPTOR).

ppfd
Pointer to a PIXELFORMATDESCRIPTOR structure whose members the function sets with pixel
format data. The function stores the number of bytes copied to the structure in the structure's nSize
member. If, upon entry, ppfd is NULL, the function writes no data to the structure. This is useful when
you only want to obtain the maximum pixel format index of a device context.

Return Values
If the function succeeds, the return value is the maximum pixel format index of the device context. In
addition, the function sets the members of the PIXELFORMATDESCRIPTOR structure pointed to by ppfd
according to the specified pixel format.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The following code sample shows DescribePixelFormat usage:

PIXELFORMATDESCRIPTOR pfd;
HDC hdc;
int iPixelFormat;

iPixelFormat = 1;

// obtain detailed information about
// the device context's first pixel format
DescribePixelFormat(hdc, iPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

See Also

ChoosePixelFormat, GetPixelFormat, SetPixelFormat

GetEnhMetaFilePixelFormat       

[New - Windows 95, OEM Service Release 2]

The GetEnhMetaFilePixelFormat function retrieves pixel format information for an enhanced metafile.

UNIT GetEnhMetaFilePixelFormat(
        HENHMETAFILE    hemf, // handle to an enhanced metafile
        DWORD cbBuffer, // buffer size
        CONST PIXELFORMATDESCRIPTOR *    ppfd // pointer to logical pixel format specification
     );

Parameters
hemf

Identifies the enhanced metafile.
cbBuffer

Specifies the size, in bytes, of the buffer into which the pixel format information is copied.
ppfd

Pointer to a PIXELFORMATDESCRIPTOR structure that contains the logical pixel format
specification. The metafile uses this structure to record the logical pixel format specification.

Return Values
If the function succeeds and finds a pixel format, the return value is the size of the metafile's pixel format.

If no pixel format is present, the return value is zero.

If an error occurs and the function fails, the return value is GDI_ERROR. To get extended error
information, call GetLastError.

Remarks
When an enhanced metafile specifies a pixel format in its ENHMETAHEADER structure and the pixel
format fits in the buffer, the pixel format information is copied into ppfd. When cbBuffer is too small to
contain the pixel format of the metafile, the pixel format is not copied to the buffer. In either case, the
function returns the size of the metafile's pixel format.

For information on metafile recording and other operations, see Enhanced Metafile Operations.

See Also
ENHMETAHEADER, PIXELFORMATDESCRIPTOR

GetPixelFormat       

   

[New - Windows 95, OEM Service Release 2]

The GetPixelFormat function obtains the index of the currently selected pixel format of the specified
device context.

int GetPixelFormat(
        HDC    hdc // device context whose currently selected pixel format index is sought
     );

Parameters
hdc

Specifies the device context of the currently selected pixel format index returned by the function.

Return Values
If the function succeeds, the return value is the currently selected pixel format index of the specified
device context. This is a positive, one-based index value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The following code sample shows GetPixelFormat usage:

PIXELFORMATDESCRIPTOR pfd;
HDC hdc;
int iPixelFormat;

// get the current pixel format index
iPixelFormat = GetPixelFormat(hdc);

// obtain a detailed description of that pixel format
DescribePixelFormat(hdc, iPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

See Also

ChoosePixelFormat, DescribePixelFormat, SetPixelFormat

SetPixelFormat       

   

[New - Windows 95, OEM Service Release 2]

The SetPixelFormat function sets the pixel format of the specified device context to the format specified
by the iPixelFormat index.

BOOL SetPixelFormat(
        HDC    hdc, // device context whose pixel format the function attempts to set
        int    iPixelFormat, // pixel format index (one-based)
        CONST PIXELFORMATDESCRIPTOR *    ppfd // pointer to logical pixel format specification
     );

Parameters
hdc

Specifies the device context whose pixel format the function attempts to set.
iPixelFormat

Index that identifies the pixel format to set. The various pixel formats supported by a device context
are identified by one-based indexes.

ppfd
Pointer to a PIXELFORMATDESCRIPTOR structure that contains the logical pixel format
specification. The system's metafile component uses this structure to record the logical pixel format
specification. The structure has no other effect upon the behavior of the SetPixelFormat function.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If hdc references a window, calling the SetPixelFormat function also changes the pixel format of the
window. Setting the pixel format of a window more than once can lead to significant complications for the
Window Manager and for multithread applications, so it is not allowed. An application can only set the
pixel format of a window one time. Once a window's pixel format is set, it cannot be changed.

You should select a pixel format in the device context before calling the wglCreateContext function. The
wglCreateContext function creates a rendering context for drawing on the device in the selected pixel
format of the device context.

An OpenGL window has its own pixel format. Because of this, only device contexts retrieved for the client
area of an OpenGL window are allowed to draw into the window. As a result, an OpenGL window should
be created with the WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles. Additionally, the window class
attribute should not include the CS_PARENTDC style.

The following code example shows SetPixelFormat usage:

PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
 1, // version number
 PFD_DRAW_TO_WINDOW | // support window
 PFD_SUPPORT_OPENGL | // support OpenGL
 PFD_DOUBLEBUFFER, // double buffered

 PFD_TYPE_RGBA, // RGBA type
 24, // 24-bit color depth
 0, 0, 0, 0, 0, 0, // color bits ignored
 0, // no alpha buffer
 0, // shift bit ignored
 0, // no accumulation buffer
 0, 0, 0, 0, // accum bits ignored
 32, // 32-bit z-buffer
 0, // no stencil buffer
 0, // no auxiliary buffer
 PFD_MAIN_PLANE, // main layer
 0, // reserved
 0, 0, 0 // layer masks ignored
};
HDC hdc;
int iPixelFormat;

// get the best available match of pixel format for the device context
iPixelFormat = ChoosePixelFormat(hdc, &pfd);

// make that the pixel format of the device context
SetPixelFormat(hdc, iPixelFormat, &pfd);

See Also

ChoosePixelFormat, DescribePixelFormat, GetPixelFormat

SwapBuffers       

   

[New - Windows 95, OEM Service Release 2]

The SwapBuffers function exchanges the front and back buffers if the current pixel format for the window
referenced by the specified device context includes a back buffer.

BOOL SwapBuffers(
        HDC    hdc // device context whose buffers get swapped
     );

Parameters
hdc

Specifies a device context. If the current pixel format for the window referenced by this device context
includes a back buffer, the function exchanges the front and back buffers.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
If the current pixel format for the window referenced by the device context does not include a back buffer,
this call has no effect and the content of the back buffer is undefined when the function returns.

With multithread applications, flush the drawing commands in any other threads drawing to the same
window before calling SwapBuffers.

wglCreateContext       

   

[New - Windows 95, OEM Service Release 2]

The wglCreateContext function creates a new OpenGL rendering context, which is suitable for drawing
on the device referenced by hdc. The rendering context has the same pixel format as the device context.

HGLRC wglCreateContext(
        HDC    hdc // device context of device that the rendering context will be suitable for
     );

Parameters
hdc

Handle to a device context for which the function creates a suitable OpenGL rendering context.

Return Values
If the function succeeds, the return value is a valid handle to an OpenGL rendering context.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
A rendering context is not the same as a device context. Set the pixel format of the device context before
creating a rendering context. For more information on setting the device context's pixel format, see the
SetPixelFormat function.

To use OpenGL, you create a rendering context, select it as a thread's current rendering context, and
then call OpenGL functions. When you are finished with the rendering context, you dispose of it by calling
the wglDeleteContext function.

The following code example shows wglCreateContext usage:

HDC hdc;
HGLRC hglrc;

// create a rendering context
hglrc = wglCreateContext (hdc);

// make it the calling thread's current rendering context
wglMakeCurrent (hdc, hglrc);

// call OpenGL APIs as desired ...

// when the rendering context is no longer needed ...

// make the rendering context not current
wglMakeCurrent (NULL, NULL) ;

// delete the rendering context
wglDeleteContext (hglrc);

See Also

SetPixelFormat, wglDeleteContext, wglGetCurrentContext, wglGetCurrentDC, wglMakeCurrent

wglCreateLayerContext       

   

[New - Windows 95, OEM Service Release 2]

The wglCreateLayerContext function creates a new OpenGL rendering context for drawing to a
specified layer plane on a device context.

HGLRC wglCreateLayerContext(
        HDC    hdc, // device context used for a rendering context
        int    iLayerPlane // specifies the layer plane that a rendering context is bound to
     );

Parameters
hdc

Specifies the device context for a new rendering context.
iLayerPlane

Specifies the layer plane to which you want to bind a rendering context. The value 0 identifies the
main plane. Positive values of iLayerPlane identify overlay planes, where 1 is the first overlay plane
over the main plane, 2 is the second overlay plane over the first overlay plane, and so on. Negative
values identify underlay planes, where -1 is the first underlay plane under the main plane, -2 is the
second underlay plane under the first underlay plane, and so on. The number of overlay and underlay
planes is given in the bReserved member of the PIXELFORMATDESCRIPTOR structure.

Return Values
If the function succeeds, the return value is a handle to an OpenGL rendering context.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
A rendering context is a port through which all OpenGL commands pass. Every thread that makes
OpenGL calls must have one current, active rendering context. A rendering context is not the same as a
device context; a rendering context contains information specific to OpenGL, while a device context
contains information specific to GDI.

Before you create a rendering context, set the pixel format of the device context with the SetPixelFormat
function. You can use a rendering context in a specified layer plane of a window with identical pixel
formats only.

With OpenGL applications that use multiple threads, you create a rendering context, select it as the
current rendering context of a thread, and make OpenGL calls for the specified thread. When you are
finished with the rendering context of the thread, call the wglDeleteContext function. The following code
example shows how to use wglCreateLayerContext.

// The following code fragment shows how to render to overlay 1
// This example assumes that the pixel format of hdc includes
// overlay plane 1

HDC hdc;
HGLRC;

// create a rendering context for overlay plane 1
hglrc = wglCreateLayerContext(hdc, 1);

// make it the calling thread's current rendering context
wglMakeCurrent(hdc, hglrc);

// call OpenGL functions here. . .

// when the rendering context is no longer needed. . .

// make the rendering context not current
wglMakeCurrent(NULL, NULL);

// delete the rendering context
wglDeleteContext(hglrc);

See Also

PIXELFORMATDESCRIPTOR, SetPixelFormat, wglCreateContext, wglDeleteContext,
wglGetCurrentContext, wglGetCurrentDC, wglMakeCurrent

wglCopyContext       

   

[New - Windows 95, OEM Service Release 2]

The wglCopyContext function copies selected groups of rendering states from one OpenGL rendering
context to another.

BOOL wglCopyContext(
        HGLRC    hglrcSrc, // specifies the source of a rendering context
        HGLRC    hlglrcDst, // specifies the destination of a rendering context
        UINT    mask // specifies what rendering state information is copied
     );

Parameters
hglrcSrc

Specifies the source OpenGL rendering context whose state information is to be copied.
hglrcDst

Specifies the destination OpenGL rendering context to which state information is to be copied.
mask

Specifies which groups of the hglrcSrc rendering state are to be copied to hglrcDst. It contains the
bitwise-OR of the same symbolic names that are passed to the glPushAttrib function. You can use
GL_ALL_ATTRIB_BITS to copy all the rendering state information.

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get
extended error information, call GetLastError.

Remarks
Using the wglCopyContext function, you can synchronize the rendering state of two rendering contexts.
You can only copy the rendering state between two rendering contexts within the same process. The
rendering contexts must be from the same OpenGL implementation. For example, you can always copy a
rendering state between two rendering contexts with identical pixel format in the same process.

You can copy the same state information available only with the glPushAttrib function. You cannot copy
some state information, such as pixel pack/unpack state, render mode state, select state, and feedback
state. When you call wglCopyContext, make sure that the destination rendering context, hglrcDst, is not
current to any thread.

See Also
glPushAttrib, wglCreateLayerContext, wglCreateContext, wglShareLists

wglDeleteContext       

   

[New - Windows 95, OEM Service Release 2]

The wglDeleteContext function deletes a specified OpenGL rendering context.

BOOL wglDeleteContext(
        HGLRC    hglrc // handle to the OpenGL rendering context to delete
     );

Parameters
hglrc

Handle to an OpenGL rendering context that the function will delete.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
It is an error to delete an OpenGL rendering context that is the current context of another thread.
However, if a rendering context is the calling thread's current context, the wglDeleteContext function
changes the rendering context to being not current before deleting it.

The wglDeleteContext function does not delete the device context associated with the OpenGL
rendering context when you call the wglMakeCurrent function. After calling wglDeleteContext, you must
call DeleteDC to delete the associated device context.

See Also
DeleteDC, wglCreateContext, wglGetCurrentContext, wglGetCurrentDC, wglMakeCurrent

wglDescribeLayerPlane       

   

[New - Windows 95, OEM Service Release 2]

The wglDescribeLayerPlane function obtains information about the layer planes of a given pixel format.

BOOL wglDescribeLayerPlane(
        HDC    hdc, // device context whose layer planes are of interest
        int    iPixelFormat, // pixel format of the desired layer plane
        int    iLayerPlane, // specifies an overlay or underlay plane
        UINT    nBytes, // specifies the size, in bytes, of a LAYERPLANEDESCRIPTOR structure
        LPLAYERPLANEDESCRIPTOR plpd // points to a LAYERPLANEDESCRIPTOR structure
     );

Parameters
hdc

Specifies the device context of a window whose layer planes are to be described.
iPixelFormat

Specifies which layer planes of a pixel format are being described.
iLayerPlane

Specifies the overlay or underlay plane. Positive values of iLayerPlane identify overlay planes, where
1 is the first overlay plane over the main plane, 2 is the second overlay plane over the first overlay
plane, and so on. Negative values identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first underlay plane, and so on. The
number of overlay and underlay planes is given in the bReserved member of the
PIXELFORMATDESCRIPTOR structure.

nBytes
Specifies the size, in bytes, of the structure pointed to by plpd. The wglDescribeLayerPlane function
stores layer plane data in a LAYERPLANEDESCRIPTOR structure, and stores no more than nBytes
of data. Set the value of nBytes to the size of LAYERPLANEDESCRIPTOR.

plpd
Points to a LAYERPLANEDESCRIPTOR structure. The wglDescribeLayerPlane function sets the
value of the structure's data members. The function stores the number of bytes of data copied to the
structure in the nSize member.

Return Values
If the function succeeds, the return value is TRUE. In addition, the wglDescribeLayerPlane function sets
the members of the LAYERPLANEDESCRIPTOR structure pointed to by plpd according to the specified
layer plane (iLayerPlane) of the specified pixel format (iPixelFormat).

If the function fails, the return value is FALSE.

Remarks
The numbering of planes (iLayerPlane) determines their order. Higher-numbered planes overlay lower-
numbered planes.

See Also
DescribePixelFormat, LAYERPLANEDESCRIPTOR, PIXELFORMATDESCRIPTOR,
wglCreateLayerContext

wglGetCurrentContext       

   

[New - Windows 95, OEM Service Release 2]

The wglGetCurrentContext function obtains a handle to the current OpenGL rendering context of the
calling thread.

HGLRC wglGetCurrentContext(VOID);

Parameters
This function has no parameters.

Return Values
If the calling thread has a current OpenGL rendering context, wglGetCurrentContext returns a handle to
that rendering context. Otherwise, the return value is NULL.

Remarks
The current OpenGL rendering context of a thread is associated with a device context by means of the
wglMakeCurrent function. You can use the wglGetCurrentDC function to obtain a handle to the device
context associated with the current OpenGL rendering context.

See Also
wglCreateContext, wglDeleteContext, wglGetCurrentDC, wglMakeCurrent

wglGetCurrentDC       

   

[New - Windows 95, OEM Service Release 2]

The wglGetCurrentDC function obtains a handle to the device context that is associated with the current
OpenGL rendering context of the calling thread.

HDC wglGetCurrentDC(VOID);

Parameters
This function has no parameters.

Return Values
If the calling thread has a current OpenGL rendering context, the function returns a handle to the device
context associated with that rendering context by means of the wglMakeCurrent function. Otherwise, the
return value is NULL.

Remarks
You associate a device context with an OpenGL rendering context when it calls the wglMakeCurrent
function. You can use the wglGetCurrentContext function to obtain a handle to the calling thread's
current OpenGL rendering context.

See Also
wglCreateContext, wglDeleteContext, wglGetCurrentContext, wglMakeCurrent

wglGetLayerPaletteEntries       

   

[New - Windows 95, OEM Service Release 2]

The wglGetLayerPaletteEntries function retrieves the palette entries from a given color-index layer
plane for a specified device context.

int wglGetLayerPaletteEntries(
        HDC    hdc, // device context of a window whose layer planes are to be described
        int    iLayerPlane, // specifies an overlay or underlay plane
        int    iStart, // specifies the first palette entry to be set
        int    cEntries, // specifies the number of palette entries to be set
        CONST COLORREF *pcr // points to the first member of an array of COLORREF structures
     );

Parameters
hdc

Specifies the device context of a window whose layer planes are to be described.
iLayerPlane

Specifies the overlay or underlay plane. Positive values of iLayerPlane identify overlay planes, where
1 is the first overlay plane over the main plane, 2 is the second overlay plane over the first overlay
plane, and so on. Negative values identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first underlay plane, and so on. The
number of overlay and underlay planes is given in the bReserved member of the
PIXELFORMATDESCRIPTOR structure.

iStart
Specifies the first palette entry to be retrieved.

cEntries
Specifies the number of palette entries to be retrieved.

pcr
Points to an array of COLORREF structures that contain palette RGB color values. The array must
contain at least as many structures as specified by cEntries.

Return Values
If the function succeeds, the return value is the number of entries that were set in the palette in the
specified layer plane of the window.

If the function fails or when no pixel format is selected, the return value is zero. To get extended error
information, call GetLastError.

Remarks
Each color-index layer plane in a window has a palette with a size 2^n, where n is the number of bit
planes in the layer plane. You cannot modify the transparent index of a palette.

Use the wglRealizeLayerPalette function to realize the layer palette. Initially the layer palette contains
only entries for white.

The wglSetPaletteEntries function doesn't set the palette entries of the main plane palette. To update the
main plane palette, use GDI palette functions.

See Also

COLORREF, LAYERPLANEDESCRIPTOR, PIXELFORMATDESCRIPTOR, wglDescribeLayerPlane,
wglRealizeLayerPalette, wglSetLayerPaletteEntries

wglGetProcAddress       

   

[New - Windows 95, OEM Service Release 2]

The wglGetProcAddress function returns the address of an OpenGL extension function for use with the
current OpenGL rendering context.

PROC wglGetProcAddress(
        LPCSTR    lpszProc // name of the extension function
     );

Parameters
lpszProc

Points to a null-terminated string that is the name of the extension function. The name of the
extension function must be identical to a corresponding function implemented by OpenGL.

Return Values
When the function succeeds, the return value is the address of the extension function.

When no current rendering context exists or the function fails, the return value is NULL. To get extended
error information, call GetLastError.

Remarks
The OpenGL library supports multiple implementations of its functions. Extension functions supported in
one rendering context are not necessarily available in a separate rendering context. Thus, for a given
rendering context in an application, use the function addresses returned by the wglGetProcAddress
function only.

The spelling and the case of the extension function pointed to by lpszProc must be identical to that of a
function supported and implemented by OpenGL. Because extension functions are not exported by
OpenGL, you must use wglGetProcAddress to get the addresses of vendor-specific extension functions.

The extension function addresses are unique for each pixel format. All rendering contexts of a given pixel
format share the same extension function addresses.

See Also
glGetString, wglMakeCurrent

wglMakeCurrent       

   

[New - Windows 95, OEM Service Release 2]

The wglMakeCurrent function makes a specified OpenGL rendering context the calling thread's current
rendering context. All subsequent OpenGL calls made by the thread are drawn on the device identified by
hdc. You can also use wglMakeCurrent to change the calling thread's current rendering context so it's no
longer current.

BOOL wglMakeCurrent(
        HDC    hdc, // device context of device that OpenGL calls are to be drawn on
        HGLRC    hglrc // OpenGL rendering context to be made the calling thread's current

rendering context
     );

Parameters
hdc

Handle to a device context. Subsequent OpenGL calls made by the calling thread are drawn on the
device identified by hdc.

hglrc
Handle to an OpenGL rendering context that the function sets as the calling thread's rendering
context.
If hglrc is NULL, the function makes the calling thread's current rendering context no longer current,
and releases the device context that is used by the rendering context. In this case, hdc is ignored.

Return Values
When the wglMakeCurrent function succeeds, the return value is TRUE; otherwise the return value is
FALSE. To get extended error information, call GetLastError.

Remarks
The hdc parameter must refer to a drawing surface supported by OpenGL. It need not be the same hdc
that was passed to wglCreateContext when hglrc was created, but it must be on the same device and
have the same pixel format. GDI transformation and clipping in hdc are not supported by the rendering
context. The current rendering context uses the hdc device context until the rendering context is no longer
current.

Before switching to the new rendering context, OpenGL flushes any previous rendering context that was
current to the calling thread.

A thread can have one current rendering context. A process can have multiple rendering contexts by
means of multithreading. A thread must set a current rendering context before calling any OpenGL
functions. Otherwise, all OpenGL calls are ignored.

A rendering context can be current to only one thread at a time. You cannot make a rendering context
current to multiple threads.

An application can perform multithread drawing by making different rendering contexts current to different
threads, supplying each thread with its own rendering context and device context.

If an error occurs, the wglMakeCurrent function makes the thread's current rendering context not current
before returning.

See Also
wglCreateContext, wglDeleteContext, wglGetCurrentContext, wglGetCurrentDC

wglRealizeLayerPalette       

   

[New - Windows 95, OEM Service Release 2]

The wglRealizeLayerPalette function maps palette entries from a given color-index layer plane into the
physical palette or initializes the palette of an RGBA layer plane.

BOOL wglRealizeLayerPalette(
        HDC    hdc, // device context whose layer plane palette is to be realized
        int    iLayerPlane, // specifies an overlay or underlay plane
        BOOL bRealize // indicates whether the palette is to be realized into the physical palette
     );

Parameters
hdc

Specifies the device context of a window whose layer plane palette is to be realized into the physical
palette.

iLayerPlane
Specifies the overlay or underlay plane. Positive values of iLayerPlane identify overlay planes, where
1 is the first overlay plane over the main plane, 2 is the second overlay plane over the first overlay
plane, and so on. Negative values identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first underlay plane, and so on. The
number of overlay and underlay planes is given in the bReserved member of the
PIXELFORMATDESCRIPTOR structure.

bRealize
Indicates whether the palette is to be realized into the physical palette. When bRealize is TRUE, the
palette entries are mapped into the physical palette where available. When bRealize is FALSE, the
palette entries for the layer plane of the window are no longer needed and might be released for use
by another foreground window.

Return Values
If the function succeeds, the return value is TRUE, even if bRealize is TRUE and the physical palette is
not available. If the function fails or when no pixel format is selected, the return value is FALSE. To get
extended error information, call GetLastError.

Remarks
The physical palette for a layer plane is a shared resource among windows with layer planes. When more
than one window attempts to realize a palette for a given physical layer plane, only one palette at a time is
realized. When you call the wglRealizeLayerPalette function, the layer palette of a foreground window is
always realized first.

When a window's layer palette is realized, its palette entries are always mapped one-to-one into the
physical palette. Unlike GDI logical palettes, with wglRealizeLayerPalette there is no mapping of other
windows' layer palettes to the current physical palette.

Whenever a window becomes the foreground window, call wglRealizeLayerPalette to realize its layer
palettes again, even if the pixel type of the layer plane is RGBA.

Because wglRealizeLayerPalette doesn't realize the palette of the main plane, use GDI palette functions
to realize the main plane palette.

See Also
LAYERPLANEDESCRIPTOR, PIXELFORMATDESCRIPTOR, wglDescribeLayerPlane,
wglGetLayerPaletteEntries, wglRealizeLayerPalette, wglSetLayerPaletteEntries

wglSetLayerPaletteEntries       

   

[New - Windows 95, OEM Service Release 2]

The wglSetLayerPaletteEntries function sets the palette entries in a given color-index layer plane for a
specified device context.

int wglSetLayerPaletteEntries(
        HDC    hdc, // device context whose layer palette is to be set
        int    iLayerPlane, // specifies an overlay or underlay plane
        int    iStart, // specifies the first palette entry to be set
        int    cEntries, // specifies the number of palette entries to be set
        CONST COLORREF *pcr // points to the first member of an array of COLORREF structures
     );

Parameters
hdc

Specifies the device context of a window whose layer palette is to be set.
iLayerPlane

Specifies an overlay or underlay plane. Positive values of iLayerPlane identify overlay planes, where
1 is the first overlay plane over the main plane, 2 is the second overlay plane over the first overlay
plane, and so on. Negative values identify underlay planes, where -1 is the first underlay plane under
the main plane, -2 is the second underlay plane under the first underlay plane, and so on. The
number of overlay and underlay planes is given in the bReserved member of the
PIXELFORMATDESCRIPTOR structure.

iStart
Specifies the first palette entry to be set.

cEntries
Specifies the number of palette entries to be set.

pcr
Points to the first member of an array of cEntries COLORREF structures that contain RGB color
information.

Return Values
If the function succeeds, the return value is the number of entries that were set in the palette in the
specified layer plane of the window. If the function fails or no pixel format is selected, the return value is
zero. To get extended error information, call GetLastError.

Remarks
Each color-index plane in a window has a palette with a size 2^n, where n is the number of bit planes in
the layer plane. You cannot modify the transparent index of a palette.

Use the wglRealizeLayerPalette function to realize the layer palette. Initially the layer palette contains
only entries for white.

The wglSetLayerPaletteEntries function doesn't set the palette entries of the main plane palette. To
update the main plane palette, use GDI palette functions.

See Also
LAYERPLANEDESCRIPTOR, PIXELFORMATDESCRIPTOR, wglDescribeLayerPlane,

wglGetLayerPaletteEntries, wglRealizeLayerPalette

wglShareLists       

   

[New - Windows 95, OEM Service Release 2]

The wglShareLists function enables multiple OpenGL rendering contexts to share a single display-list
space.

BOOL wglShareLists(
        HGLRC    hglrc1, // OpenGL rendering context with which to share display lists
        HGLRC    hglrc2 // OpenGL rendering context to share display lists
     );

Parameters
hglrc1

Specifies the OpenGL rendering context with which to share display lists.
hglrc2

Specifies the OpenGL rendering context to share display lists with hglrc1. The hglrc2 parameter
should not contain any existing display lists when wglShareLists is called.

Return Values
When the function succeeds, the return value is TRUE.

When the function fails, the return value is FALSE and the display lists are not shared. To get extended
error information, call GetLastError.

Remarks
When you create an OpenGL rendering context, it has its own display-list space. The wglShareLists
function enables a rendering context to share the display-list space of another rendering context; any
number of rendering contexts can share a single display-list space. Once a rendering context shares a
display-list space, the rendering context always uses the display-list space until the rendering context is
deleted. When the last rendering context of a shared display-list space is deleted, the shared display-list
space is deleted. All the indexes and definitions of display lists in a shared display-list space are shared.

You can only share display lists with rendering contexts within the same process. However, not all
rendering contexts in a process can share display lists. Rendering contexts can share display lists only if
they use the same implementation of OpenGL functions. All client rendering contexts of a given pixel
format can always share display lists.

All rendering contexts of a shared display list must use an identical pixel format. Otherwise the results
depend on the implementation of OpenGL used.

Note    The wglShareLists function is only available with OpenGL version 1.01 or later. To determine
the version number of the implementation of OpenGL, call glGetString.

See Also
glGetString

wglSwapLayerBuffers       

   

[New - Windows 95, OEM Service Release 2]

The wglSwapLayerBuffers function swaps the front and back buffers in the overlay, underlay, and main
planes of the window referenced by a specified device context.

BOOL wglSwapLayerBuffers(
        HDC    hdc, // device context whose layer plane buffers are to be swapped
        UINT    fuPlanes // specifies the overlay, underlay and main planes to be swapped
     );

Parameters
hdc

Specifies the device context of a window whose layer plane palette is to be realized into the physical
palette.

fuPlanes
Specifies the overlay, underlay, and main planes whose front and back buffers are to be swapped.
The bReserved member of the PIXELFORMATDESCRIPTOR structure specifies the number of
overlay and underlay planes. The fuPlanes parameter is a bitwise combination of the following values.

Value Meaning
WGL_SWAP_MAIN_PLANE Swaps the front and back buffers of

the main plane.
WGL_SWAP_OVERLAYi Swaps the front and back buffers of

the overlay plane i, where i is an
integer between 1 and 15.
WGL_SWAP_OVERLAY1 identifies
the first overlay plane over the main
plane, WGL_SWAP_OVERLAY2
identifies the second overlay plane
over the first overlay plane, and so
on.

WGL_SWAP_UNDERLAYi Swaps the front and back buffers of
the underlay plane i, where i is an
integer between 1 and 15.
WGL_SWAP_UNDERLAY1 identifies
the first underlay plane under the
main plane,
WGL_SWAP_UNDERLAY2 identifies
the second underlay plane under the
first underlay plane, and so on.

Return Values
If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get
extended error information, call GetLastError.

Remarks
When a layer plane doesn't include a back buffer, calling the wglSwapLayerBuffers function has no
effect on that layer plane. After you call wglSwapLayerBuffers, the state of the back buffer content is
given in the corresponding LAYERPLANEDESCRIPTOR structure of the layer plane or in the

PIXELFORMATDESCRIPTOR structure of the main plane. The wglSwapLayerBuffers function swaps
the front and back buffers in the specified layer planes simultaneously.

Some devices don't support swapping layer planes individually; they swap all layer planes as a group.
When the PFD_SWAP_LAYER_BUFFERS flag of the PIXELFORMATDESCRIPTOR structure is set, it
indicates that a device can swap individual layer planes and that you can call wglSwapLayerBuffers.

With applications that use multiple threads, before calling wglSwapLayerBuffers, clear all drawing
commands in all threads drawing to the same window.

See Also
LAYERPLANEDESCRIPTOR, PIXELFORMATDESCRIPTOR, SwapBuffers

wglUseFontBitmaps       

   

[New - Windows 95, OEM Service Release 2]

The wglUseFontBitmaps function creates a set of bitmap display lists for use in the current OpenGL
rendering context. The set of bitmap display lists is based on the glyphs in the currently selected font in
the device context. You can then use bitmaps to draw characters in an OpenGL image.

The wglUseFontBitmaps function creates count display lists, one for each of a run of count glyphs that
begins with the first glyph in the hdc parameter's selected fonts.

BOOL wglUseFontBitmaps(
        HDC    hdc, // device context whose font will be used
        DWORD    first, // glyph that is the first of a run of glyphs to be turned into bitmap display

lists
        DWORD    count, // number of glyphs to turn into bitmap display lists
        DWORD    listBase // specifies starting display list
     );

Parameters
hdc

Specifies the device context whose currently selected font will be used to form the glyph bitmap
display lists in the current OpenGL rendering context.

first
Specifies the first glyph in the run of glyphs that will be used to form glyph bitmap display lists.

count
Specifies the number of glyphs in the run of glyphs that will be used to form glyph bitmap display lists.
The function creates count display lists, one for each glyph in the run.

listBase
Specifies a starting display list.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks
The wglUseFontBitmaps function defines count display lists in the current OpenGL rendering context.
Each display list has an identifying number, starting at listBase. Each display list consists of a single call
to glBitmap. The definition of bitmap listBase+i is taken from the glyph first+i of the font currently selected
in the device context specified by hdc. If a glyph is not defined, then the function defines an empty display
list for it.

The wglUseFontBitmaps function creates bitmap text in the plane of the screen. It enables the labeling
of objects in OpenGL.

In the current version of Microsoft's implementation of OpenGL in Windows NT and Windows 95, you
cannot make GDI calls to a device context that has a double-buffered pixel format. Therefore, you cannot
use the GDI fonts and text functions with such device contexts. You can use the wglUseFontBitmaps
function to circumvent this limitation and draw text in a double-buffered device context.

The function determines the parameters of each call to glBitmap as follows.

glBitmap Parameter Meaning
width The width of the glyph's bitmap, as returned

in the gmBlackBoxX member of the glyph's
GLYPHMETRICS structure.

height The height of the glyph's bitmap, as returned
in the gmBlackBoxY member of the glyph's
GLYPHMETRICS structure.

xorig The x offset of the glyph's origin, as returned
in the gmptGlyphOrigin.x member of the
glyph's GLYPHMETRICS structure.

yorig The y offset of the glyph's origin, as returned
in the gmptGlyphOrigin.y member of the
glyph's GLYPHMETRICS structure.

xmove The horizontal distance to the origin of the
next character cell, as returned in the
gmCellIncX member of the glyph's
GLYPHMETRICS structure.

ymove The vertical distance to the origin of the next
character cell as returned in the gmCellIncY
member of the glyph's GLYPHMETRICS
structure.

bitmap The bitmap for the glyph, as returned by
GetGlyphOutline with uFormat equal to 1.

The following code example shows how to use wglUseFontBitmaps to draw some text:

HDC hdc;
HGLRC hglrc;

// create a rendering context
hglrc = wglCreateContext (hdc);

// make it the calling thread's current rendering context
wglMakeCurrent (hdc, hglrc);

// now we can call OpenGL API

// make the system font the device context's selected font
SelectObject (hdc, GetStockObject (SYSTEM_FONT));

// create the bitmap display lists
// we're making images of glyphs 0 thru 255
// the display list numbering starts at 1000, an arbitrary choice
wglUseFontBitmaps (hdc, 0, 255, 1000);

// display a string:
// indicate start of glyph display lists
glListBase (1000);
// now draw the characters in a string
glCallLists (24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World");

See Also

GetGlyphOutline, glBitmap, glCallLists, glListBase, GLYPHMETRICS, wglUseFontOutlines

wglUseFontOutlines       

   

[New - Windows 95, OEM Service Release 2]

The wglUseFontOutlines function creates a set of display lists, one for each glyph of the currently
selected outline font of a device context, for use with the current rendering context. The display lists are
used to draw 3-D characters of TrueType fonts. Each display list describes a glyph outline in floating-point
coordinates.

The run of glyphs begins with the first glyph of the font of the specified device context. The em square
size of the font, the notional grid size of the original font outline from which the font is fitted, is mapped to
1.0 in the x- and y-coordinates in the display lists. The extrusion parameter sets how much depth the font
has in the z direction.

The lpgmf parameter returns a GLYPHMETRICSFLOAT structure that contains information about the
placement and orientation of each glyph in a character cell.

BOOL wglUseFontOutlines(
        HDC    hdc, // device context of the outline font
        DWORD    first, // first glyph to be turned into a display list
        DWORD    count, // number of glyphs to be turned into display lists
        DWORD    listBase, // specifies the starting display list
        FLOAT    deviation, // specifies the maximum chordal deviation from the true outlines
        FLOAT    extrusion, // extrusion value in the negative z direction
        int    format, // specifies line segments or polygons in display lists
        LPGLYPHMETRICSFLOAT    lpgmf // address of buffer to receive glyph metric data
     );

Parameters
hdc

Specifies the device context with the desired outline font. The outline font of hdc is used to create the
display lists in the current rendering context.

first
Specifies the first of the set of glyphs that form the font outline display lists.

count
Specifies the number of glyphs in the set of glyphs used to form the font outline display lists. The
wglUseFontOutlines function creates count display lists, one display list for each glyph in a set of
glyphs.

listBase
Specifies a starting display list.

deviation
Specifies the maximum chordal deviation from the original outlines. When deviation is zero, the
chordal deviation is equivalent to one design unit of the original font. The value of deviation must be
equal to or greater than 0.

extrusion
Specifies how much a font is extruded in the negative z direction. The value must be equal to or
greater than 0. When extrusion is 0, the display lists are not extruded.

format
Specifies the format, either WGL_FONT_LINES or WGL_FONT_POLYGONS, to use in the display
lists. When format is WGL_FONT_LINES, the wglUseFontOutlines function creates fonts with line
segments. When format is WGL_FONT_POLYGONS, wglUseFontOutlines creates fonts with

polygons.
lpgmf

Points to an array of count GLYPHMETRICSFLOAT structures that is to receive the metrics of the
glyphs. When lpgmf is NULL, no glyph metrics are returned.

Return Values
When the function succeeds, the return value is TRUE.

When the function fails, the return value is FALSE and no display lists are generated. To get extended
error information, call GetLastError.

Remarks
The wglUseFontOutlines function defines the glyphs of an outline font with display lists in the current
rendering context. The wglUseFontOutlines function works with TrueType fonts only; stroke and raster
fonts are not supported.

Each display list consists of either line segments or polygons, and has a unique identifying number
starting with the listBase number.

The wglUseFontOutlines function approximates glyph outlines by subdividing the quadratic B-spline
curves of the outline into line segments, until the distance between the outline and the interpolated
midpoint is within the value specified by deviation. This is the final format used when format is
WGL_FONT_LINES. When you specify WGL_FONT_OUTLINES, the display lists created don't contain
any normals; thus lighting doesn't work properly. To get the correct lighting of lines use
WGL_FONT_POLYGONS and set glPolygonMode(GL_FRONT, GL_LINE). When you specify format as
WGL_FONT_POLYGONS the outlines are further tessellated into separate triangles, triangle fans,
triangle strips, or quadrilateral strips to create the surface of each glyph. With WGL_FONT_POLYGONS,
the created display lists call glFrontFace(GL_CW) or glFrontFace(GL_CCW); thus the current front-face
value might be altered. For the best appearance of text with WGL_FONT_POLYGONS, cull the back
faces as follows:

glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);

A GLYPHMETRICSFLOAT structure contains information about the placement and orientation of each
glyph in a character cell. The lpgmf parameter is an array of GLYPHMETRICSFLOAT structures holding
the entire set of glyphs for a font. Each display list ends with a translation specified with the gmfCellIncX
and gmfCellIncY members of the corresponding GLYPHMETRICSFLOAT structure. The translation
enables the drawing of successive characters in their natural direction with a single call to glCallLists.

Note    With the current release of OpenGL for Windows NT and Windows 95, you cannot make GDI
calls to a device context when a pixel format is double-buffered. You can work around this limitation
by using wglUseFontOutlines and wglUseFontBitmaps, when using double-buffered device
contexts.

The following code example shows how to draw text using wglUseFontOutlines:

HDC hdc; // A TrueType font has already been selected
HGLRC hglrc;
GLYPHMETRICSFLOAT agmf[256];

// Make hglrc the calling thread's current rendering context
wglMakeCurrent(hdc, hglrc);

// create display lists for glyphs 0 through 255 with 0.1 extrusion
// and default deviation. The display list numbering starts at 1000
// (it could be any number)
wglUseFontOutlines(hdc, 0, 255, 1000, 0.0f, 0.1f,
 WGL_FONT_POLYGONS, &agmf);

// Set up transformation to draw the string
glLoadIdentity();
glTranslate(0.0f, 0.0f, -5.0f)
glScalef(2.0f, 2.0f, 2.0f);

// Display a string
glListBase(1000); // Indicates the start of display lists for the glyphs
// Draw the characters in a string
glCallLists(24, GL_UNSIGNED_BYTE, "Hello Win32 OpenGL World.");

See Also

glCallLists, glListBase, glTexGen, GLYPHMETRICSFLOAT, wglUseFontBitmaps

GLYPHMETRICSFLOAT       

   

[New - Windows 95, OEM Service Release 2]

The GLYPHMETRICSFLOAT structure contains information about the placement and orientation of a
glyph in a character cell.

typedef struct _GLYPHMETRICSFLOAT { // gmf
 FLOAT gmfBlackBoxX;
 FLOAT gmfBlackBoxY;
 POINTFLOAT gmfptGlyphOrigin;
 FLOAT gmfCellIncX;
 FLOAT gmfCellIncY;
} GLYPHMETRICSFLOAT;

Members

gmfBlackBoxX
Specifies the width of the smallest rectangle (the glyph's black box) that completely encloses the
glyph.

gmfBlackBoxY
Specifies the height of the smallest rectangle (the glyph's black box) that completely encloses the
glyph.

gmfptGlyphOrigin
Specifies the x and y coordinates of the upper-left corner of the smallest rectangle that completely
encloses the glyph.

gmfCellIncX
Specifies the horizontal distance from the origin of the current character cell to the origin of the next
character cell.

gmfCellIncY
Specifies the vertical distance from the origin of the current character cell to the origin of the next
character cell.

Remarks
The values of GLYPHMETRICSFLOAT are specified as notional units.

See Also
POINTFLOAT, wglUseFontOutlines   

LAYERPLANEDESCRIPTOR       

[New - Windows 95, OEM Service Release 2]

The LAYERPLANEDESCRIPTOR structure describes the pixel format of a drawing surface.

typedef struct tagLAYERPLANEDESCRIPTOR { // pfd
 WORD nSize;
 WORD nVersion;
 DWORD dwFlags;
 BYTE iPixelType;
 BYTE cColorBits;
 BYTE cRedBits;
 BYTE cRedShift;
 BYTE cGreenBits;
 BYTE cGreenShift;
 BYTE cBlueBits;
 BYTE cBlueShift;
 BYTE cAlphaBits;
 BYTE cAlphaShift;
 BYTE cAccumBits;
 BYTE cAccumRedBits;
 BYTE cAccumGreenBits;
 BYTE cAccumBlueBits;
 BYTE cAccumAlphaBits;
 BYTE cDepthBits;
 BYTE cStencilBits;
 BYTE cAuxBuffers;
 BYTE iLayerPlane
 BYTE bReserved;
 COLORREF crTransparent;
} LAYERPLANEDESCRIPTOR;

Members

nSize
Specifies the size of this data structure. Set this value to sizeof(LAYERPLANEDESCRIPTOR).

nVersion
Specifies the version of this data structure. Set this value to 1.

dwFlags
A set of bit flags that specify properties of the layer plane. The properties are generally not mutually
exclusive; any combination of bit flags can be set, with the exceptions noted. The following bit flag
constants are defined.

Value Meaning
LPD_SUPPORT_OPENGL The layer plane supports OpenGL

drawing.
LPD_SUPPORT_GDI The layer plane supports GDI

drawing. The current implementation
of OpenGL doesn't support this flag.

LPD_DOUBLEBUFFER The layer plane is double-buffered. A
layer plane can be double-buffered
even when the main plane is single-

buffered and vice versa.
LPD_STEREO The layer plane is stereoscopic. A

layer plane can be stereoscopic even
when the main plane is monoscopic
and vice versa.

LPD_SWAP_EXCHANGE In a double-buffered layer plane,
swapping the color buffer exchanges
the front buffer and back buffer
contents. The back buffer then
contains the contents of the front
buffer before the swap. This flag is a
hint only and might not be provided
by a driver.

LPD_SWAP_COPY In a double-buffered layer plane,
swapping the color buffer copies the
back buffer contents to the front
buffer. The swap does not affect the
back buffer contents. This flag is a
hint only and might not be provided
by a driver.

LPD_TRANSPARENT The crTransparent member of this
structure contains a transparent color
or index value that enables
underlying layers to show through
this layer. All layer planes, except the
lowest-numbered underlay layer,
have a transparent color or index.

LPD_SHARE_DEPTH The layer plane shares the depth
buffer with the main plane.

LPD_SHARE_STENCIL The layer plane shares the stencil
buffer with the main plane.

LPD_SHARE_ACCUM The layer plane shares the
accumulation buffer with the main
plane.

iPixelType
Specifies the type of pixel data. The following types are defined.

Value Meaning
LPD_TYPE_RGBA RGBA pixels. Each pixel has four

components: red, green, blue, and
alpha.

LPD_TYPE_COLORINDEX Color-index pixels. Each pixel uses a
color-index value.

cColorBits
Specifies the number of color bitplanes in each color buffer. For RGBA pixel types, it is the size of the
color buffer, excluding the alpha bitplanes. For color-index pixels, it is the size of the color-index
buffer.

cRedBits
Specifies the number of red bitplanes in each RGBA color buffer.

cRedShift
Specifies the shift count for red bitplanes in each RGBA color buffer.

cGreenBits

Specifies the number of green bitplanes in each RGBA color buffer.
cGreenShift

Specifies the shift count for green bitplanes in each RGBA color buffer.
cBlueBits

Specifies the number of blue bitplanes in each RGBA color buffer.
cBlueShift

Specifies the shift count for blue bitplanes in each RGBA color buffer.
cAlphaBits

Specifies the number of alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not supported.
cAlphaShift

Specifies the shift count for alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not
supported.

cAccumBits
Specifies the total number of bitplanes in the accumulation buffer.

cAccumRedBits
Specifies the number of red bitplanes in the accumulation buffer.

cAccumGreenBits
Specifies the number of green bitplanes in the accumulation buffer.

cAccumBlueBits
Specifies the number of blue bitplanes in the accumulation buffer.

cAccumAlphaBits
Specifies the number of alpha bitplanes in the accumulation buffer.

cDepthBits
Specifies the depth of the depth (z-axis) buffer.

cStencilBits
Specifies the depth of the stencil buffer.

cAuxBuffers
Specifies the number of auxiliary buffers. Auxiliary buffers are not supported.

iLayerType
Specifies the layer plane number. Positive values of iLayerType identify overlay planes, where 1 is the
first overlay plane over the main plane, 2 is the second overlay plane over the first overlay plane, and
so on. Negative values identify underlay planes, where -1 is the first underlay plane under the main
plane, -2 is the second underlay plane under the first underlay plane, and so on. The number of
overlay and underlay planes is given in the bReserved member of the PIXELFORMATDESCRIPTOR
structure.

bReserved
Not used. Must be zero.

crTransparent
When the LPD_TRANSPARENT flag is set, specifies the transparent color or index value. Typically
the value is zero.

Remarks
Please notice, as documented above, that certain layer plane properties are not supported in the current
implementation. The implementation is the Microsoft GDI software implementation of OpenGL. Hardware
manufacturers that enhance parts of OpenGL may support some layer plane properties not supported by
the generic implementation.

See Also
PIXELFORMATDESCRIPTOR, wglCreateLayerContext, wglDescribeLayerPlane,
wglGetLayerPaletteEntries, wglRealizeLayerPalette, wglSetLayerPaletteEntries,
wglSwapLayerBuffers

PIXELFORMATDESCRIPTOR       

[New - Windows 95, OEM Service Release 2]

The PIXELFORMATDESCRIPTOR structure describes the pixel format of a drawing surface.

typedef struct tagPIXELFORMATDESCRIPTOR { // pfd
 WORD nSize;
 WORD nVersion;
 DWORD dwFlags;
 BYTE iPixelType;
 BYTE cColorBits;
 BYTE cRedBits;
 BYTE cRedShift;
 BYTE cGreenBits;
 BYTE cGreenShift;
 BYTE cBlueBits;
 BYTE cBlueShift;
 BYTE cAlphaBits;
 BYTE cAlphaShift;
 BYTE cAccumBits;
 BYTE cAccumRedBits;
 BYTE cAccumGreenBits;
 BYTE cAccumBlueBits;
 BYTE cAccumAlphaBits;
 BYTE cDepthBits;
 BYTE cStencilBits;
 BYTE cAuxBuffers;
 BYTE iLayerType;
 BYTE bReserved;
 DWORD dwLayerMask;
 DWORD dwVisibleMask;
 DWORD dwDamageMask;
} PIXELFORMATDESCRIPTOR;

Members

nSize
Specifies the size of this data structure. This value should be set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion
Specifies the version of this data structure. This value should be set to 1.

dwFlags
A set of bit flags that specify properties of the pixel buffer. The properties are generally not mutually
exclusive; you can set any combination of bit flags, with the exceptions noted. The following bit flag
constants are defined.

Value Meaning
PFD_DRAW_TO_WINDOW The buffer can draw to a window

or device surface.
PFD_DRAW_TO_BITMAP The buffer can draw to a memory

bitmap.
PFD_SUPPORT_GDI The buffer supports GDI

drawing. This flag and

PFD_DOUBLEBUFFER are
mutually exclusive in the current
generic implementation.

PFD_SUPPORT_OPENGL The buffer supports OpenGL
drawing.

PFD_GENERIC_ACCELERATE
D

The pixel format is supported by
a device driver that accelerates
the generic implementation. If
this flag is clear and the
PFD_GENERIC_FORMAT flag is
set, the pixel format is supported
by the generic implementation
only.

PFD_GENERIC_FORMAT The pixel format is supported by
the GDI software
implementation, which is also
known as the generic
implementation. If this bit is clear,
the pixel format is supported by a
device driver or hardware.

PFD_NEED_PALETTE The buffer uses RGBA pixels on
a palette-managed device. A
logical palette is required to
achieve the best results for this
pixel type. Colors in the palette
should be specified according to
the values of the cRedBits,
cRedShift, cGreenBits,
cGreenShift, cBluebits, and
cBlueShift members. The
palette should be created and
realized in the device context
before calling wglMakeCurrent.

PFD_NEED_SYSTEM_PALETT
E

Defined in the pixel format
descriptors of hardware that
supports one hardware palette in
256-color mode only. For such
systems to use hardware
acceleration, the hardware
palette must be in a fixed order
(for example, 3-3-2) when in
RGBA mode or must match the
logical palette when in color-
index mode.
When this flag is set, you must
call SetSystemPaletteUse in
your program to force a one-to-
one mapping of the logical
palette and the system palette. If
your OpenGL hardware supports
multiple hardware palettes and
the device driver can allocate
spare hardware palettes for
OpenGL, this flag is typically

clear.
This flag is not set in the generic
pixel formats.

PFD_DOUBLEBUFFER The buffer is double-buffered.
This flag and
PFD_SUPPORT_GDI are
mutually exclusive in the current
generic implementation.

PFD_STEREO The buffer is stereoscopic. This
flag is not supported in the
current generic implementation.

PFD_SWAP_LAYER_BUFFERS Indicates whether a device can
swap individual layer planes with
pixel formats that include double-
buffered overlay or underlay
planes. Otherwise all layer
planes are swapped together as
a group. When this flag is set,
wglSwapLayerBuffers is
supported.

You can specify the following bit flags when calling ChoosePixelFormat.
Value Meaning
PFD_DEPTH_DONTCARE The requested pixel format can

either have or not have a depth
buffer. To select a pixel format
without a depth buffer, you must
specify this flag. The requested
pixel format can be with or
without a depth buffer.
Otherwise, only pixel formats
with a depth buffer are
considered.

PFD_DOUBLEBUFFER
_DONTCARE

The requested pixel format can
be either single- or double-
buffered.

PFD_STEREO_DONTCARE The requested pixel format can
be either monoscopic or
stereoscopic.

With the glAddSwapHintRectWIN extension function, two new flags are included for the
PIXELFORMATDESCRIPTOR pixel format structure.

Value Meaning
PFD_SWAP_COPY Specifies the content of the back

buffer in the double-buffered
main color plane following a
buffer swap. Swapping the color
buffers causes the content of the
back buffer to be copied to the
front buffer. The content of the
back buffer is not affected by the
swap. PFD_SWAP_COPY is a
hint only and might not be

provided by a driver.
PFD_SWAP_EXCHANGE Specifies the content of the back

buffer in the double-buffered
main color plane following a
buffer swap. Swapping the color
buffers causes the exchange of
the back buffer's content with the
front buffer's content. Following
the swap, the back buffer's
content contains the front buffer's
content before the swap.
PFD_SWAP_EXCHANGE is a
hint only and might not be
provided by a driver.

iPixelType
Specifies the type of pixel data. The following types are defined.

Value Meaning
PFD_TYPE_RGBA RGBA pixels. Each pixel has four

components in this order: red,
green, blue, and alpha.

PFD_TYPE_COLORINDEX Color-index pixels. Each pixel
uses a color-index value.

cColorBits
Specifies the number of color bitplanes in each color buffer. For RGBA pixel types, it is the size of the
color buffer, excluding the alpha bitplanes. For color-index pixels, it is the size of the color-index
buffer.

cRedBits
Specifies the number of red bitplanes in each RGBA color buffer.

cRedShift
Specifies the shift count for red bitplanes in each RGBA color buffer.

cGreenBits
Specifies the number of green bitplanes in each RGBA color buffer.

cGreenShift
Specifies the shift count for green bitplanes in each RGBA color buffer.

cBlueBits
Specifies the number of blue bitplanes in each RGBA color buffer.

cBlueShift
Specifies the shift count for blue bitplanes in each RGBA color buffer.

cAlphaBits
Specifies the number of alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not supported.

cAlphaShift
Specifies the shift count for alpha bitplanes in each RGBA color buffer. Alpha bitplanes are not
supported.

cAccumBits
Specifies the total number of bitplanes in the accumulation buffer.

cAccumRedBits
Specifies the number of red bitplanes in the accumulation buffer.

cAccumGreenBits
Specifies the number of green bitplanes in the accumulation buffer.

cAccumBlueBits

Specifies the number of blue bitplanes in the accumulation buffer.
cAccumAlphaBits

Specifies the number of alpha bitplanes in the accumulation buffer.
cDepthBits

Specifies the depth of the depth (z-axis) buffer.
cStencilBits

Specifies the depth of the stencil buffer.
cAuxBuffers

Specifies the number of auxiliary buffers. Auxiliary buffers are not supported.
iLayerType

Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.
bReserved

Specifies the number of overlay and underlay planes. Bits 0 through 3 specify up to 15 overlay planes
and bits 4 through 7 specify up to 15 underlay planes.

dwLayerMask
Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.

dwVisibleMask
Specifies the transparent color or index of an underlay plane. When the pixel type is RGBA,
dwVisibleMask is a transparent RGB color value. When the pixel type is color index, it is a
transparent index value.

dwDamageMask
Ignored. Earlier implementations of OpenGL used this member, but it is no longer used.

Remarks
Please notice carefully, as documented above, that certain pixel format properties are not supported in
the current generic implementation. The generic implementation is the Microsoft GDI software
implementation of OpenGL. Hardware manufacturers may enhance parts of OpenGL, and may support
some pixel format properties not supported by the generic implementation.

See Also
ChoosePixelFormat, DescribePixelFormat, GetPixelFormat, SetPixelFormat

POINTFLOAT   

[New - Windows 95, OEM Service Release 2]

The POINTFLOAT structure contains the x and y coordinates of a point.

typedef struct _POINTFLOAT { // ptf
 FLOAT x;
 FLOAT y;
} POINTFLOAT;

Members

x
Specifies the horizontal (x) coordinate of a point.

y
Specifies the vertical (y) coordinate of a point.

See Also
GLYPHMETRICSFLOAT

Programming Tips
This section lists some useful programming tips and guidelines. Keep in mind that these tips are based on
the intentions of the designers of OpenGL, not on any experience with actual applications and
implementations. This section has the following topics:

· OpenGL Correctness Tips
· OpenGL Performance Tips

OpenGL Correctness Tips
Follow these guidelines to create OpenGL applications that perform as you intend:

· Assume error behavior on the part of an OpenGL implementation may change in a future release of
OpenGL. OpenGL error semantics may change between upward-compatible revisions.

· Use the projection matrix to collapse all geometry to a single plane. If the modelview matrix is used,
OpenGL features that operate in eye coordinates (such as lighting and application-defined clipping
planes) might fail.

· Do not make extensive changes to a single matrix. For example, do not animate a rotation by
continually calling glRotate with an incremental angle. Rather, use glLoadIdentity to initialize the
given matrix for each frame, and then call glRotate with the desired complete angle for that frame.

· Expect multiple passes through a rendering database to generate the same pixel fragments only if
this behavior is guaranteed by the invariance rules established for a compliant OpenGL
implementation. Otherwise, multiple passes might generate varying sets of fragments.

· Do not expect errors to be reported while a display list is being defined. The commands within a
display list generate errors only when the list is executed.

· To optimize the operation of the depth buffer, place the near frustum plane as far from the viewpoint
as possible.

· Call glFlush to force execution of all previous OpenGL commands. Do not count on glGet or
glIsEnabled to flush the rendering stream. Query commands flush as much of the stream as is
required to return valid data but don't necessarily complete all pending rendering commands.

· Turn dithering off when rendering predithered images (for example, when glCopyPixels is called).
· Make use of the full range of the accumulation buffer. For example, if accumulating four images, scale

each by one-quarter as it's accumulated.
· To obtain exact two-dimensional rasterization, carefully specify both the orthographic projection and

the vertices of primitives that are to be rasterized. Specify the orthographic projection with integer
coordinates, as shown in the following example:
gluOrtho2D(0, width, 0, height);

The parameters width and height are the dimensions of the viewport. Given this projection matrix,
place polygon vertices and pixel image positions at integer coordinates to rasterize predictably. For
example, glRecti(0, 0, 1, 1) reliably fills the lower-left pixel of the viewport, and glRasterPos2i(0, 0)
reliably positions an unzoomed image at the lower-left pixel of the viewport. However, point vertices,
line vertices, and bitmap positions should be placed at half-integer locations. For example, a line
drawn from (x (1) , 0.5) to (x (2) , 0.5) will be reliably rendered along the bottom row of pixels in the
viewport, and a point drawn at (0.5, 0.5) will reliably fill the same pixel as glRecti(0, 0, 1, 1).
An optimum compromise that allows all primitives to be specified at integer positions, while still
ensuring predictable rasterization, is to translate x and y by 0.375, as shown in the following code
sample. Such a translation keeps polygon and pixel image edges safely away from the centers of
pixels, while moving line vertices close enough to the pixel centers.
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, width, 0, height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
/* render all primitives at integer positions */

· Avoid using negative w vertex coordinates and negative q texture coordinates. OpenGL might not clip
such coordinates correctly and can make interpolation errors when shading primitives defined by such

coordinates.

OpenGL Performance Tips
These programming practices optimize your application's performance:

· Use glColorMaterial when only a single material property is being varied rapidly (at each vertex, for
example). Use glMaterial for infrequent changes, or when more than a single material property is
being varied rapidly.

· Use glLoadIdentity to initialize a matrix, rather than loading your own copy of the identity matrix.
· Use specific matrix calls such as glRotate, glTranslate, and glScale, rather than composing your

own rotation, translation, and scale matrices and calling glMultMatrix.
· Use glPushAttrib and glPopAttrib to save and restore state values. Use query functions only when

your application requires the state values for its own computations.
· Use display lists to encapsulate potentially expensive state changes. For example, place all the

glTexImage calls required to completely specify a texture (and perhaps the associated
glTexParameter, glPixelStore, and glPixelTransfer calls as well) into a single display list. Call this
display list to select the texture.

· Use display lists to encapsulate the rendering calls of rigid objects that will be drawn repeatedly.
· To minimize network bandwidth in client/server environments, use evaluators even for simple surface

tessellations.
· If possible, to avoid the overhead of GL_NORMALIZE, provide unit-length normals. Because glScale

almost always requires enabling GL_NORMALIZE, avoid using glScale when doing lighting.
· If smooth shading isn't required, set glShadeModel to GL_FLAT.
· Use a single glClear call per frame, if possible. Do not use glClear to clear small subregions of the

buffers; use it only to clear the buffer completely or nearly completely.
· To draw multiple independent triangles, use a single call rather than multiple calls to

glBegin(GL_TRIANGLES) or a call to glBegin(GL_POLYGON). Similarly:
To draw even a single triangle, use GL_TRIANGLES rather than GL_POLYGON.
Use a single call to glBegin(GL_QUADS) rather than calling glBegin(GL_POLYGON) repeatedly.
Use a single call to glBegin(GL_LINES) to draw multiple independent line segments, rather than
calling glBegin(GL_LINES) multiple times.

· In general, use the vector forms of commands to pass precomputed data, and use the scalar forms of
commands to pass values that are computed near call time.

· Avoid making redundant mode changes, such as setting the color to the same value between each
vertex of a flat-shaded polygon.

· When drawing or copying images, disable rasterization and per-fragment operations, which consume
a lot of resources. OpenGL can apply textures to pixel images.

Attribute Groups
Mask Bit Attribute Group
GL_ACCUM_BUFFER_BIT accum-buffer
GL_ALL_ATTRIB_BITS ¾

GL_COLOR_BUFFER_BIT color-buffer
GL_CURRENT_BIT current
GL_DEPTH_BUFFER_BIT depth-buffer
GL_ENABLE_BIT enable
GL_EVAL_BIT eval
GL_FOG_BIT fog
GL_HINT_BIT hint
GL_LIGHTING_BIT lighting
GL_LINE_BIT line
GL_LIST_BIT list
GL_PIXEL_MODE_BIT pixel
GL_POINT_BIT point
GL_POLYGON_BIT polygon
GL_POLYGON_STIPPLE_B
IT

polygon-stipple

GL_SCISSOR_BIT scissor
GL_STENCIL_BUFFER_BITstencil-buffer
GL_TEXTURE_BIT texture
GL_TRANSFORM_BIT transform
GL_VIEWPORT_BIT viewport

void glPopAttrib(void);

Restores the values of those state variables that were saved with the last glPushAttrib.

State Variables for Current Values and Associated Data
GL_CURRENT_COLOR

Description: Current color
Attribute group: current
Initial value: 1,1,1,1
Get command: glGetIntegerv

glGetFloatv

GL_CURRENT_INDEX
Description: Current color index
Attribute group: current
Initial value: 1
Get command: glGetIntegerv

glGetFloatv

GL_CURRENT_TEXTURE_COORDS
Description: Current texture coordinates
Attribute group: current
Initial value: 0,0,0,1
Get command: glGetFloatv

GL_CURRENT_NORMAL
Description: Current normal
Attribute group: current
Initial value: 0,0,1
Get command: glGetFloatv

GL_CURRENT_RASTER POSITION
Description: Current raster position
Attribute group: current
Initial value: 0,0,0,1
Get command: glGetFloatv

GL_CURRENT_RASTER_DISTANCE
Description: Current raster distance
Attribute group: current
Initial value: 0
Get command: glGetFloatv

GL_CURRENT_RASTER_COLOR
Description: Color associated with raster position
Attribute group: current
Initial value: 1,1,1,1
Get command: glGetIntegerv

glGetFloatv

GL_CURRENT_RASTER_INDEX
Description: Color index associated with raster position
Attribute group: current

Initial value: 1
Get command: glGetIntegerv

glGetFloatv

GL_CURRENT_RASTER_TEXTURE_COORDS
Description: Texture coordinates associated with raster

position
Attribute group: current
Initial value: 0,0,0,1
Get command: glGetFloatv

GL_CURRENT_RASTER_POSITION_VALID
Description: Raster position valid bit
Attribute group: current
Initial value: GL_TRUE
Get command: glGetBooleanv

GL_EDGE_FLAG
Description: Edge flag
Attribute group: current
Initial value: GL_TRUE
Get command: glGetBooleanv

Transformation State Variables
GL_MODELVIEW_MATRIX

Description: Modelview matrix stack
Attribute group: ¾

Initial value: Identity
Get command: glGetFloatv

GL_PROJECTION_MATRIX
Description: Projection matrix stack
Attribute group: ¾

Initial value: Identity
Get command: glGetFloatv

GL_TEXTURE_MATRIX
Description: Texture matrix stack
Attribute group: ¾

Initial value: Identity
Get command: glGetFloatv

GL_VIEWPORT
Description: Viewport origin and extent
Attribute group: viewport
Initial value: ¾

Get command: glGetIntegerv

GL_DEPTH_RANGE
Description: Depth range near and far
Attribute group: viewport
Initial value: 0,1
Get command: glGetFloatv

GL_MODELVIEW_STACK_DEPTH
Description: Modelview matrix stack pointer
Attribute group: ¾

Initial value: 1
Get command: glGetIntegerv

GL_PROJECTION_STACK_DEPTH
Description: Projection matrix stack pointer
Attribute group: ¾

Initial value: 1
Get command: glGetIntegerv

GL_TEXTURE_STACK_DEPTH
Description: Texture matrix stack pointer
Attribute group: ¾

Initial value: 1
Get command: glGetIntegerv

GL_MATRIX_MODE
Description: Current matrix mode
Attribute group: transform
Initial value: GL_MODELVIEW
Get command: glGetIntegerv

GL_NORMALIZE
Description: Current normal normalization on/off
Attribute group: transform/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_CLIP_PLANEi
Description: User clipping plane coefficients
Attribute group: transform
Initial value: 0,0,0,0
Get command: glGetClipPlane

GL_CLIP_PLANEi
Description: ith user clipping plane enabled
Attribute group: transform/enable
Initial value: GL_FALSE
Get command: glIsEnabled

Coloring State Variables
GL_FOG_COLOR

Description: Fog color
Attribute group: fog
Initial value: 0,0,0,0
Get command: glGetFloatv

GL_FOG_INDEX
Description: Fog index
Attribute group: fog
Initial value: 0
Get command: glGetFloatv

GL_FOG_DENSITY
Description: Exponential fog density
Attribute group: fog
Initial value: 1.0
Get command: glGetFloatv

GL_FOG_START
Description: Linear fog start
Attribute group: fog
Initial value: 0.0
Get command: glGetFloatv

GL_FOG_END
Description: Linear fog end
Attribute group: fog
Initial value: 1.0
Get command: glGetFloatv

GL_FOG_MODE
Description: Fog mode
Attribute group: fog
Initial value: GL_EXP
Get command: glGetIntegerv

GL_FOG
Description: True if fog enabled
Attribute group: fog/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_SHADE_MODEL
Description: glShadeModel setting
Attribute group: lighting
Initial value: GL_SMOOTH
Get command: glGetIntegerv

Lighting State Variables
GL_LIGHTING

Description: True if lighting is enabled
Attribute group: lighting/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_COLOR_MATERIAL
Description: True if color tracking is enabled
Attribute group: lighting
Initial value: GL_FALSE
Get command: glIsEnabled

GL_COLOR_MATERIAL_PARAMETER
Description: Material properties tracking current color
Attribute group: lighting
Initial value: GL_AMBIENT_AND_DIFFUSE
Get command: glGetIntegerv

GL_COLOR_MATERIAL_FACE
Description: Face(s) affected by color tracking
Attribute group: lighting
Initial value: GL_FRONT_AND_BACK
Get command: glGetIntegerv

GL_AMBIENT
Description: Ambient material color
Attribute group: lighting
Initial value: (0.2, 0.2, 0.2, 1.0)
Get command: glGetMaterialfv

GL_DIFFUSE
Description: Diffuse material color
Attribute group: lighting
Initial value: (0.8, 0.8, 0.8, 1.0)
Get command: glGetMaterialfv

GL_SPECULAR
Description: Specular material color
Attribute group: lighting
Initial value: (0.0, 0.0, 0.0, 1.0)
Get command: glGetMaterialfv

GL_EMISSION
Description: Emissive material color
Attribute group: lighting
Initial value: (0.0, 0.0, 0.0, 1.0)
Get command: glGet

GL_SHININESS
Description: Specular exponent of material
Attribute group: lighting
Initial value: 0.0
Get command: glGetMaterialfv

GL_LIGHT_MODEL_AMBIENT
Description: Ambient scene color
Attribute group: lighting
Initial value: (0.2, 0.2, 0.2, 0.1)
Get command: glGetFloatv

GL_LIGHT_MODEL_LOCAL_VIEWER
Description: Viewer is local
Attribute group: lighting
Initial value: GL_FALSE
Get command: glGetBooleanv

GL_LIGHT_MODEL_TWO_SIDE
Description: Use two-sided lighting
Attribute group: lighting
Initial value: GL_FALSE
Get command: glGetBooleanv

GL_AMBIENT
Description: Ambient intensity of light i
Attribute group: lighting
Initial value: (0.0, 0.0, 0.0, 1.0)
Get command: glGetLightfv

GL_DIFFUSE
Description: Diffuse intensity of light i
Attribute group: lighting
Initial value: ¾

Get command: glGetLightfv

GL_SPECULAR
Description: Specular intensity of light i
Attribute group: lighting
Initial value: ¾

Get command: glGetLightfv

GL_POSITION
Description: Position of light i
Attribute group: lighting
Initial value: (0.0, 0.0, 1.0, 0.0)
Get command: glGetLightfv

GL_CONSTANT_ATTENUATION
Description: Constant attenuation factor
Attribute group: lighting

Initial value: 1.0
Get command: glGetLightfv

GL_LINEAR_ATTENUATION
Description: Linear attenuation factor
Attribute group: lighting
Initial value: 0.0
Get command: glGetLightfv

GL_QUADRATIC_ATTENUATION
Description: Quadratic attenuation factor
Attribute group: lighting
Initial value: 0.0
Get command: glGetLightfv

GL_SPOT_DIRECTION
Description: Spotlight direction of light i
Attribute group: lighting
Initial value: (0.0, 0.0, -1.0)
Get command: glGetLightfv

GL_SPOT_EXPONENT
Description: Spotlight exponent of light i
Attribute group: lighting
Initial value: 0.0
Get command: glGetLightfv

GL_SPOT_CUTOFF
Description: Spotlight angle of light i
Attribute group: lighting
Initial value: 180.0
Get command: glGetLightfv

GL_LIGHTi
Description: True if light i enabled
Attribute group: lighting/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_COLOR_INDEXES
Description: C (a) , C (d) , and C (s) for color-index lighting
Attribute group: lighting/enable
Initial value: 0, 1, 1
Get command: glGetFloatv

Rasterization State Variables
GL_POINT_SIZE

Description: Point size
Attribute group: point
Initial value: 1.0
Get command: glGetFloatv

GL_POINT_SMOOTH
Description: Point aliasing on
Attribute group: point/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_LINE_WIDTH
Description: Line width
Attribute group: line
Initial value: 1.0
Get command: glGetFloatv

GL_LINE_SMOOTH
Description: Line antialiasing on
Attribute group: line/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_LINE_STIPPLE_PATTERN
Description: Line stipple
Attribute group: line
Initial value: 1's
Get command: glGetIntegerv

GL_LINE_STIPPLE_REPEAT
Description: Line stipple repeat
Attribute group: line
Initial value: 1
Get command: glGetIntegerv

GL_LINE_STIPPLE
Description: Line stipple enable
Attribute group: line/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_CULL_FACE
Description: Polygon culling enabled
Attribute group: polygon/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_CULL_FACE_MODE
Description: Cull front-/back-facing polygons
Attribute group: polygon
Initial value: GL_BACK
Get command: glGetIntegerv

GL_FRONT_FACE
Description: Polygon front-face CW/CCW indicator
Attribute group: polygon
Initial value: GL_CCW
Get command: glGetIntegerv

GL_POLYGON_SMOOTH
Description: Polygon antialiasing on
Attribute group: polygon/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_POLYGON_MODE
Description: Polygon rasterization mode (front and

back)
Attribute group: polygon
Initial value: GL_FILL
Get command: glGetIntegerv

GL_POLYGON_STIPPLE
Description: Polygon stipple enable
Attribute group: polygon/enable
Initial value: GL_FALSE
Get command: glIsEnabled

¾

Description: Polygon stipple pattern
Attribute group: polygon-stipple
Initial value: 1's
Get command: glGetPolygonStipple

Texturing State Variables
GL_TEXTURE_x

Description: True if x-D texturing enabled (x is 1-D or 2-
D)

Attribute group: texture/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_TEXTURE
Description: x-D texture image at level of detail i
Attribute group: ¾

Initial value: ¾

Get command: glGetTexImage

GL_TEXTURE_WIDTH
Description: x-D texture image i's width
Attribute group: ¾

Initial value: 0
Get command: glGetTexLevelParameter

GL_TEXTURE_HEIGHT
Description: x-D texture image i's height
Attribute group: ¾

Initial value: 0
Get command: glGetTexLevelParameter

GL_TEXTURE_BORDER
Description: x-D texture image i's border
Attribute group: ¾

Initial value: 0
Get command: glGetTexLevelParameter

GL_TEXTURE_COMPONENTS
Description: Texture image components
Attribute group: ¾

Initial value: 1
Get command: glGetTexLevelParameter

GL_TEXTURE_BORDER_COLOR
Description: Texture border color
Attribute group: texture
Initial value: 0,0,0,0
Get command: glGetTexParameter

GL_TEXTURE_MIN_FILTER
Description: Texture minification function
Attribute group: texture
Initial value: GL_NEAREST_MIPMAP_LINEAR
Get command: glGetTexParameter

GL_TEXTURE_MAG_FILTER
Description: Texture magnification function
Attribute group: texture
Initial value: GL_LINEAR
Get command: glGetTexParameter

GL_TEXTURE_WRAP_x
Description: Texture wrap mode (x is S or T)
Attribute group: texture
Initial value: GL_REPEAT
Get command: glGetTexParameter

GL_TEXTURE_ENV_MODE
Description: Texture application function
Attribute group: texture
Initial value: GL_MODULATE
Get command: glGetTexEnviv

GL_TEXTURE_ENV_COLOR
Description: Texture environment color
Attribute group: texture
Initial value: 0,0,0,0
Get command: glGetTexEnvfv

GL_TEXTURE_GEN_x
Description: Texgen is enabled (x is S, T, R, or Q)
Attribute group: texture/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_EYE_LINEAR
Description: Texgen plane equation coefficients
Attribute group: texture
Initial value: ¾

Get command: glGetTexGenfv

GL_OBJECT_LINEAR
Description: Texgen object linear coefficients
Attribute group: texture
Initial value: ¾

Get command: glGetTexGenfv

GL_TEXTURE_GEN_MODE
Description: Function used for texgen
Attribute group: texture
Initial value: GL_EYTE_LINEAR
Get command: glGetTexGeniv

Pixel Operations
GL_SCISSOR_TEST

Description: Scissoring enabled
Attribute group: scissor/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_SCISSOR_BOX
Description: Scissor box
Attribute group: scissor
Initial value: ¾

Get command: glGetIntegerv

GL_STENCIL_TEST
Description: Stenciling enabled
Attribute group: stencil-buffer/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_STENCIL_FUNC
Description: Stencil function
Attribute group: stencil-buffer
Initial value: GL_ALWAYS
Get command: glGetIntegerv

GL_STENCIL_VALUE_MASK
Description: Stencil mask
Attribute group: stencil-buffer
Initial value: 1's
Get command: glGetIntegerv

GL_STENCIL_REF
Description: Stencil reference value
Attribute group: stencil-buffer
Initial value: 0
Get command: glGetIntegerv

GL_STENCIL_FAIL
Description: Stencil fail action
Attribute group: stencil-buffer
Initial value: GL_KEEP
Get command: glGetIntegerv

GL_STENCIL_PASS_DEPTH_FAIL
Description: Stencil depth buffer fail action
Attribute group: stencil-buffer
Initial value: GL_KEEP
Get command: glGetIntegerv

GL_STENCIL_PASS_DEPTH_PASS
Description: Stencil depth buffer pass action
Attribute group: stencil-buffer
Initial value: GL_KEEP
Get command: glGetIntegerv

GL_ALPHA_TEST
Description: Alpha test enabled
Attribute group: color-buffer/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_ALPHA_TEST_FUNC
Description: Alpha test function
Attribute group: color-buffer
Initial value: GL_ALWAYS
Get command: glGetIntegerv

GL_ALPHA_TEST_REF
Description: Alpha test reference value
Attribute group: color-buffer
Initial value: 0
Get command: glGetIntegerv

GL_DEPTH_TEST
Description: Depth buffer enabled
Attribute group: depth-buffer/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_DEPTH_FUNC
Description: Depth buffer test function
Attribute group: depth-buffer
Initial value: GL_LESS
Get command: glGetIntegerv

GL_BLEND
Description: Blending enabled
Attribute group: color-buffer/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_BLENC_SRC
Description: Blending source function
Attribute group: color-buffer
Initial value: GL_ONE
Get command: glGetIntegerv

GL_BLEND_DST
Description: Blending destination function
Attribute group: color-buffer

Initial value: GL_ZERO
Get command: glGetIntegerv

GL_LOGIC_OP
Description: Logical operation enabled
Attribute group: color-buffer/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_LOGIC_OP_MODE
Description: Logical operation function
Attribute group: color-buffer
Initial value: GL_COPY
Get command: glGetIntegerv

GL_DITHER
Description: Dithering enabled
Attribute group: color-buffer/enable
Initial value: GL_TRUE
Get command: glIsEnabled

Framebuffer Control State Variables
GL_DRAW_BUFFER

Description: Buffers selected for drawing
Attribute group: color-buffer
Initial value: ¾

Get command: glGetIntegerv

GL_INDEX_WRITEMASK
Description: Color-index writemask
Attribute group: color-buffer
Initial value: 1's
Get command: glGetIntegerv

GL_COLOR_WRITEMASK
Description: Color write enables; R, G, B, or A
Attribute group: color-buffer
Initial value: GL_TRUE
Get command: glGetBooleanv

GL_DEPTH_WRITEMASK
Description: Depth buffer enabled for writing
Attribute group: depth-buffer
Initial value: GL_TRUE
Get command: glGetBooleanv

GL_STENCIL_WRITEMASK
Description: Stencil-buffer writemask
Attribute group: stencil-buffer
Initial value: 1's
Get command: glGetIntegerv

GL_COLOR_CLEAR_VALUE
Description: Color-buffer clear value (RGBA mode)
Attribute group: color-buffer
Initial value: 0, 0, 0, 0
Get command: glGetFloatv

GL_INDEX_CLEAR_VALUE
Description: Color-buffer clear value (color-index mode)
Attribute group: color-buffer
Initial value: 0
Get command: glGetFloatv

GL_DEPTH_CLEAR_VALUE
Description: Depth-buffer clear value
Attribute group: depth-buffer
Initial value: 1
Get command: glGetIntegerv

GL_STENCIL_CLEAR_VALUE
Description: Stencil-buffer clear value
Attribute group: stencil-buffer
Initial value: 0
Get command: glGetIntegerv

GL_ACCUM_CLEAR_VALUE
Description: Accumulation-buffer clear value
Attribute group: accum-buffer
Initial value: 0
Get command: glGetFloatv

Pixel State Variables
GL_UNPACK_SWAP_BYTES

Description: Value of GL_UNPACK_SWAP_BYTES
Attribute group: ¾

Initial value: GL_FALSE
Get command: glGetBooleanv

GL_UNPACK_LSB_FIRST
Description: Value of GL_UNPACK_LSB_FIRST
Attribute group: ¾

Initial value: GL_FALSE
Get command: glGetBooleanv

GL_UNPACK_ROW_LENGTH
Description: Value of GL_UNPACK_ROW_LENGTH
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_UNPACK_SKIP_ROWS
Description: Value of GL_UNPACK_SKIP_ROWS
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_UNPACK_SKIP_PIXELS
Description: Value of GL_UNPACK_SKIP_PIXELS
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_UNPACK_ALIGNMENT
Description: Value of GL_UNPACK_ALIGNMENT
Attribute group: ¾

Initial value: 4
Get command: glGetIntegerv

GL_PACK_SWAP_BYTES
Description: Value of GL_PACK_SWAP_BYTES
Attribute group: ¾

Initial value: GL_FALSE
Get command: glGetBooleanv

GL_PACK_LSB_FIRST
Description: Value of GL_PACK_LSB_FIRST
Attribute group: ¾

Initial value: GL_FALSE
Get command: glGetBooleanv

GL_PACK_ROW_LENGTH
Description: Value of GL_PACK_ROW_LENGTH
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_PACK_SKIP_ROWS
Description: Value of GL_PACK_SKIP_ROWS
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_PACK_SKIP_PIXELS
Description: Value of GL_PACK_SKIP_PIXELS
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_PACK_ALIGNMENT
Description: Value of GL_PACK_ALIGNMENT
Attribute group: ¾

Initial value: 4
Get command: glGetIntegerv

GL_MAP_COLOR
Description: True if colors are mapped
Attribute group: pixel
Initial value: GL_FALSE
Get command: glGetBooleanv

GL_MAP_STENCIL
Description: True if stencil values are mapped
Attribute group: pixel
Initial value: GL_FALSE
Get command: glGetBooleanv

GL_INDEX_SHIFT
Description: Value of GL_INDEX_SHIFT
Attribute group: pixel
Initial value: 0
Get command: glGetIntegerv

GL_INDEX_OFFSET
Description: Value of GL_INDEX_OFFSET
Attribute group: pixel
Initial value: 0
Get command: glGetIntegerv

GL_x_SCALE
Description: Value of GL_x_SCALE; x is GL_RED,

GL_BLUE, GL_ALPHA, or GL_DEPTH

Attribute group: pixel
Initial value: 1
Get command: glGetFloatv

GL_x_BIAS
Description: Value of GL_x_BIAS; x is GL_RED

GL_BLUE, GL_ALPHA, or GL_DEPTH
Attribute group: pixel
Initial value: 0
Get command: glGetFloatv

GL_ZOOM_X
Description: x zoom factor
Attribute group: pixel
Initial value: 1.0
Get command: glGetFloatv

GL_ZOOM_Y
Description: y zoom factor
Attribute group: pixel
Initial value: 1.0
Get command: glGetFloatv

GL_x
Description: glPixelMap translation tables
Attribute group: pixel
Initial value: 0's
Get command: glGetPixelMap

GL_x_SIZE
Description: Size of table x
Attribute group: pixel
Initial value: 1
Get command: glGetIntegerv

GL_READ_BUFFER
Description: Read source buffer
Attribute group: pixel
Initial value: ¾

Get command: glGetIntegerv

Evaluator State Variables
GL_ORDER

Description: 1-D map order
Attribute group: ¾

Initial value: 1
Get command: glGetMapiv

GL_ORDER
Description: 2-D map orders
Attribute group: ¾

Initial value: 1, 1
Get command: glGetMapiv

GL_COEFF
Description: 1-D control points
Attribute group: ¾

Initial value: ¾

Get command: glGetMapfv

GL_COEFF
Description: 2-D control points
Attribute group: ¾

Initial value: ¾

Get command: glGetMapfv

GL_DOMAIN
Description: 1-D domain endpoints
Attribute group: ¾

Initial value: ¾

Get command: glGetMapfv

GL_DOMAIN
Description: 2-D domain endpoints
Attribute group: ¾

Initial value: ¾

Get command: glGetMapfv

GL_MAP1_x
Description: 1-D map enables: x is map type
Attribute group: eval/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_MAP2_x
Description: 2-D map enables: x is map type
Attribute group: eval/enable
Initial value: GL_FALSE
Get command: glIsEnabled

GL_MAP1_GRID_DOMAIN
Description: 1-D grid endpoints
Attribute group: eval
Initial value: 0, 1
Get command: glGetFloatv

GL_MAP2_GRID_DOMAIN
Description: 2-D grid endpoints
Attribute group: eval
Initial value: 0, 1; 0, 1
Get command: glGetFloatv

GL_MAP1_GRID_SEGMENTS
Description: 1-D grid divisions
Attribute group: eval
Initial value: 1
Get command: glGetFloatv

GL_MAP1_GRID_SEGMENTS
Description: 2-D grid segments
Attribute group: eval
Initial value: 1, 1
Get command: glGetFloatv

GL_AUTO_NORMAL
Description: True if automatic normal generation

enabled
Attribute group: eval
Initial value: GL_FALSE
Get command: glIsEnabled

Hint State Variables
GL_PERSPECTIVE_CORRECTION_HINT

Description: Perspective correction hint
Attribute group: hint
Initial value: GL_DON'T CARE
Get command: glGetIntegerv

GL_POINT_SMOOTH_HINT
Description: Point smooth hint
Attribute group: hint
Initial value: GL_DON'T CARE
Get command: glGetIntegerv

GL_LINE_SMOOTH_HINT
Description: Line smooth hint
Attribute group: hint
Initial value: GL_DON'T CARE
Get command: glGetIntegerv

GL_POLYGON_SMOOTH_HINT
Description: Polygon smooth hint
Attribute group: hint
Initial value: GL_DON'T CARE
Get command: glGetIntegerv

GL_FOG_HINT
Description: Fog hint
Attribute group: hint
Initial value: GL_DON'T CARE
Get command: glGetIntegerv

Implementation-Dependent State Variables
GL_MAX_LIGHTS

Description: Maximum number of lights
Attribute group: ¾

Initial value: 8
Get command: glGetIntegerv

GL_MAX_CLIP_PLANES
Description: Maximum number of user clipping planes
Attribute group: ¾

Initial value: 6
Get command: glGetIntegerv

GL_MAX_MODELVIEW_STACK_DEPTH
Description: Maximum modelview-matrix stack depth
Attribute group: ¾

Initial value: 32
Get command: glGetIntegerv

GL_MAX_PROJECTION_STACK_DEPTH
Description: Maximum projection-matrix stack depth
Attribute group: ¾

Initial value: 2
Get command: glGetIntegerv

GL_MAX_MAX_TEXTURE_STACK_DEPTH
Description: Maximum depth of texture matrix stack
Attribute group: ¾

Initial value: 2
Get command: glGetIntegerv

GL_SUBPIXEL_BITS
Description: Number of bits of subpixel precision in x

and y
Attribute group: ¾

Initial value: 4
Get command: glGetIntegerv

GL_MAX_TEXTURE_SIZE
Description: Maximum height or width of a texture

image (without borders)
Attribute group: ¾

Initial value: 64
Get command: glGetIntegerv

GL_MAX_PIXEL_MAP_TABLE
Description: Maximum size of a glPixelMap translation

table
Attribute group: ¾

Initial value: 32
Get command: glGetIntegerv

GL_MAX_NAME_STACK_DEPTH
Description: Maximum selection-name stack depth
Attribute group: ¾

Initial value: 64
Get command: glGetIntegerv

GL_MAX_LIST_NESTING
Description: Maximum display-list call nesting
Attribute group: ¾

Initial value: 64
Get command: glGetIntegerv

GL_MAX_EVAL_ORDER
Description: Maximum evaluator polynomial order
Attribute group: ¾

Initial value: 8
Get command: glGetIntegerv

GL_MAX_VIEWPORT_DIMS
Description: Maximum viewport dimensions
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_MAX_ATTRIB_STACK_DEPTH
Description: Maximum depth of the attribute stack
Attribute group: ¾

Initial value: 16
Get command: glGetIntegerv

GL_AUX_BUFFERS
Description: Number of auxiliary buffers
Attribute group: ¾

Initial value: 0
Get command: glGetBooleanv

GL_RGBA_MODE
Description: True if color buffers store RGBA
Attribute group: ¾

Initial value: ¾

Get command: glGetBooleanv

GL_INDEX_MODE
Description: True if color buffers store indexes
Attribute group: ¾

Initial value: ¾

Get command: glGetBooleanv

GL_DOUBLEBUFFER
Description: True if front and back buffers exist
Attribute group: ¾

Initial value: ¾

Get command: glGetBooleanv

GL_STEREO
Description: True if left and right buffers exist
Attribute group: ¾

Initial value: ¾

Get command: glGetFloatv

GL_POINT_SIZE_RANGE
Description: Range (low to high) of antialiased point

sizes
Attribute group: ¾

Initial value: 1, 1
Get command: glGetFloatv

GL_POINT_SIZE_GRANULARITY
Description: Antialiased point size granularity
Attribute group: ¾

Initial value: ¾

Get command: glGetFloatv

GL_LINE_WIDTH_RANGE
Description: Range (low to high) of antialiased line

widths
Attribute group: ¾

Initial value: 1, 1
Get command: glGetFloatv

GL_LINE_WIDTH_GRANULARITY
Description: Antialiased line-width granularity
Attribute group: ¾

Initial value: ¾

Get command: glGetFloatv

Implementation-Dependent Pixel-Depth State Variables
GL_RED_BITS

Description: Number of bits per red component in color
buffers

Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_GREEN_BITS
Description: Number of bits per green component in

color buffers
Attribute group: ¾

Get command: glGetIntegerv
Initial value: ¾

GL_BLUE_BITS
Description: Number of bits per blue component in color

buffers
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_ALPHA_BITS
Description: Number of bits per alpha component in

color buffers
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_INDEX_BITS
Description: Number of bits per index in color buffers
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_DEPTH_BITS
Description: Number of depth-buffer bitplanes
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_STENCIL_BITS
Description: Number of stencil bitplanes
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_ACCUM_RED_BITS
Description: Number of bits per red component in the

accumulation buffer

Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_ACCUM_GREEN_BITS
Description: Number of bits per green component in the

accumulation buffer
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_ACCUM_BLUE_BITS
Description: Number of bits per blue component in the

accumulation buffer
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

GL_ACCUM_ALPHA_BITS
Description: Number of bits per alpha component in the

accumulation buffer
Attribute group: ¾

Initial value: ¾

Get command: glGetIntegerv

Miscellaneous State Variables
GL_LIST_BASE

Description: Setting of glListBase
Attribute group: list
Initial value: 0
Get command: glGetIntegerv

 GL_LIST_INDEX
Description: Number of display lists under construction;

0 if none
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_LIST_MODE
Description: Mode of display list under construction;

undefined if none
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_ATTRIB_STACK_DEPTH
Description: Attribute stack pointer
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_NAME_STACK_DEPTH
Description: Name stack depth
Attribute group: ¾

Initial value: 0
Get command: glGetIntegerv

GL_RENDER_MODE
Description: glRenderMode setting
Attribute group: ¾

Initial value: GL_RENDER
Get command: glGetIntegerv

¾

Description: Current error code(s)
Attribute group: ¾

Initial value: 0
Get command: glGetError

glAccum   

[New - Windows 95, OEM Service Release 2]

The glAccum function operates on the accumulation buffer.

void glAccum(
        GLenum op,
        GLfloat value
     );

Parameters
op

The accumulation buffer operation. The accepted symbolic constants are:
GL_ACCUM

Obtains R, G, B, and A values from the buffer currently selected for reading (see glReadBuffer).
Each component value is divided by 2n - 1, where n is the number of bits allocated to each color
component in the currently selected buffer. The result is a floating-point value in the range [0,1],
which is multiplied by value and added to the corresponding pixel component in the accumulation
buffer, thereby updating the accumulation buffer.

GL_LOAD
Similar to GL_ACCUM, except that the current value in the accumulation buffer is not used in the
calculation of the new value. That is, the R, G, B, and A values from the currently selected buffer
are divided by 2n - 1, multiplied by value, and then stored in the corresponding accumulation buffer
cell, overwriting the current value.

GL_ADD
Adds value to each R, G, B, and A in the accumulation buffer.

GL_MULT
Multiplies each R, G, B, and A in the accumulation buffer by value and returns the scaled
component to its corresponding accumulation buffer location.

GL_RETURN
Transfers accumulation buffer values to the color buffer or buffers currently selected for writing.
Each R, G, B, and A component is multiplied by value, then multiplied by 2n - 1, clamped to the
range [0, 2n - 1], and stored in the corresponding display buffer cell. The only fragment operations
that are applied to this transfer are pixel ownership, scissor, dithering, and color writemasks.

value
A floating-point value used in the accumulation buffer operation. The op parameter determines how
value is used.

Remarks
The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather,
images rendered into one of the color buffers are added to the contents of the accumulation buffer after
rendering. You can create effects such as antialiasing (of points, lines, and polygons), motion blur, and
depth of field by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number of bits
per component in the accumulation buffer depends on the implementation. You can examine this number
by calling glGetIntegerv four times, with the arguments GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS, respectively.
Regardless of the number of bits per component, however, the range of values stored by each component
is [- 1, 1]. The accumulation buffer pixels are mapped one-to-one with frame buffer pixels.

The glAccum function operates on the accumulation buffer. The first argument, op, is a symbolic
constant that selects an accumulation buffer operation. The second argument, value, is a floating-point

value to be used in that operation. Five operations are specified: GL_ACCUM, GL_LOAD, GL_ADD,
GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and are applied
identically to the red, green, blue, and alpha components of each pixel. The contents of an accumulation
buffer pixel component are undefined if the glAccum operation results in a value outside the range [-
1,1]. The operations are as follows:

To clear the accumulation buffer, use the glClearAccum function to specify R, G, B, and A values to set it
to, and issue a glClear function with the accumulation buffer enabled.

Only those pixels within the current scissor box are updated by any glAccum operation.

The following functions retrieve information related to the glAccum function:

glGet with argument GL_ACCUM_RED_BITS
glGet with argument GL_ACCUM_GREEN_BITS
glGet with argument GL_ACCUM_BLUE_BITS
glGet with argument GL_ACCUM_ALPHA_BITS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM op was not an accepted value.
GL_INVALID_OPERATION There was no accumulation buffer.
GL_INVALID_OPERATION glAccum was called between a call

to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glBlendFunc, glClear, glClearAccum, glCopyPixels, glEnd, glGet, glLogicOp,
glPixelStore, glPixelTransfer, glReadBuffer, glReadPixels, glScissor, glStencilOp

glAddSwapHintRectWIN   

[New - Windows 95, OEM Service Release 2]

The glAddSwapHintRectWIN function specifies a set of rectangles that are to be copied by
SwapBuffers.

void glAddSwapHintRectWIN(
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height
     );

Parameters
x

The x-coordinate (in window coordinates) of the lower-left corner of the hint region rectangle.
y

The y-coordinate (in window coordinates) of the lower-left corner of the hint region rectangle.
width

The width of the hint region rectangle.
height

The height of the hint region rectangle.

Remarks
The glAddSwapHintRectWIN function speeds up animation by reducing the amount of repainting
between frames. With glAddSwapHintRectWIN, you specify a set of rectangular areas that you want
copied when you call SwapBuffers. When you do not specify any rectangles with
glAddSwapHintRectWIN before calling SwapBuffers, the entire frame buffer is swapped. Using
glAddSwapHintRectWIN to copy only parts of the buffer that changed can significantly increase the
performance of SwapBuffers, especially when SwapBuffers is implemented in software.

The glAddSwapHintRectWIN function adds a rectangle to the hint region. When the PFD_SWAP_COPY
flag of the PIXELFORMATDESCRIPTOR pixel format structure is set, SwapBuffers uses this region to
clip the copying of the back buffer to the front buffer. You don't specify PFD_SWAP_COPY; it is set by
capable hardware. The hint region is cleared after each call to SwapBuffers. With some hardware
configurations, SwapBuffers can ignore the hint region and exchange the entire buffer. SwapBuffers is
implemented by the system, not by the application.

OpenGL maintains a separate hint region for each window. When you call glAddSwapHintRectWIN on
any rendering contexts associated with a window, the hint rectangles are combined into a single region.

Call glAddSwapHintRectWIN with a bounding rectangle for each object drawn for a frame and for each
rectangle cleared to erase previous frame objects.

Note    The glAddSwapHintRectWIN function is an extension function that is not part of the
standard OpenGL library but is part of the GL_WIN_swap_hint extension. To check whether your
implementation of OpenGL supports glAddSwapHintRectWIN, call glGetString(GL_EXTENSIONS).
If it returns GL_WIN_swap_hint, glAddSwapHintRectWIN is supported. To obtain the address of an
extension function, call wglGetProcAddress.

See Also
glGetString, PIXELFORMATDESCRIPTOR, SwapBuffers, wglGetProcAddress

glAlphaFunc   

[New - Windows 95, OEM Service Release 2]

The glAlphaFunc function specifies the alpha test function.

void glAlphaFunc(
        GLenum func,
        GLclampf ref
     );

Parameters
func

The alpha comparison function. The following are the accepted symbolic constants and their
meanings.

Symbolic Constant Meaning
GL_NEVER Never passes.
GL_LESS Passes if the incoming alpha

value is less than the reference
value.

GL_EQUAL Passes if the incoming alpha
value is equal to the reference
value.

GL_LEQUAL Passes if the incoming alpha
value is less than or equal to the
reference value.

GL_GREATER Passes if the incoming alpha
value is greater than the
reference value.

GL_NOTEQUAL Passes if the incoming alpha
value is not equal to the reference
value.

GL_GEQUAL Passes if the incoming alpha
value is greater than or equal to
the reference value.

GL_ALWAYS Always passes. This is the
default.

ref
The reference value to which incoming alpha values are compared. This value is clamped to the
range 0 through 1, where 0 represents the lowest possible alpha value and 1 the highest possible
value. The default reference is 0.

Remarks
The alpha test discards fragments depending on the outcome of a comparison between the incoming
fragments' alpha values and a constant reference value. The glAlphaFunc function specifies the
reference and comparison function. The comparison is performed only if alpha testing is enabled. (For
more information on GL_ALPHA_TEST, see glEnable.)

The func and ref parameters specify the conditions under which the pixel is drawn. The incoming alpha
value is compared to ref using the function specified by func. If the comparison passes, the incoming
fragment is drawn, conditional on subsequent stencil and depth-buffer tests. If the comparison fails, no
change is made to the frame buffer at that pixel location.

The glAlphaFunc function operates on all pixel writes, including those resulting from the scan conversion
of points, lines, polygons, and bitmaps, and from pixel draw and copy operations. The glAlphaFunc
function does not affect screen clear operations.

Alpha testing is done only in RGBA mode.

The following functions retrieve information related to the glAlphaFunc function:

glGet with argument GL_ALPHA_TEST_FUNC
glGet with argument GL_ALPHA_TEST_REF
glIsEnabled with argument GL_ALPHA_TEST

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM func was not an accepted value.
GL_INVALID_OPERATION glAlphaFunc was called between a

call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glBlendFunc, glClear, glDepthFunc, glEnable, glEnd, glGet, glIsEnabled, glStencilFunc

glAreTexturesResident
[New - Windows 95, OEM Service Release 2]

The glAreTexturesResident function determines whether specified texture objects are resident.

GLboolean glAreTexturesResident(
        GLsizei n,
        GLuint * textures
        GLboolean *
residences
     );

Parameters
n

The number of textures to be queried.
textures

The address of an array containing the names of the textures to be queried.
residences

The address of an array in which the texture residence status is returned. The residence status of a
texture named by an element of textures is returned in the corresponding element of residences.

Remarks
On machines with a limited amount of texture memory, OpenGL establishes a ``working set'' of textures
that are resident in texture memory. These textures can be bound to a texture target much more efficiently
than textures that are not resident.

The glAreTexturesResident function queries the texture residence status of the n textures named by the
elements of textures. If all the named textures are resident, glAreTexturesResident returns GL_TRUE,
and the contents of residences are undisturbed. If any of the named textures are not resident,
glAreTexturesResident returns GL_FALSE, and detailed status is returned in the n elements of
residences.

If an element of residences is GL_TRUE, then the texture named by the corresponding element of
textures is resident.

To query the residence status of a single bound texture, call glGetTexParameter with the target
parameter set to the target texture to which the target is bound and set the pname parameter to
GL_TEXTURE_RESIDENT. You must use this method to query the resident status of a default texture.

You cannot include glAreTexturesResident in display lists.

Note    The glAreTexturesResident function is only available in OpenGL version 1.1 or later.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE n was a negative value.
GL_INVALID_VALUE An element in textures was zero or

did not contain a texture name.
GL_INVALID_OPERATION glAreTexturesResident was called

between a call to glBegin and the

corresponding call to glEnd.

See Also
glBegin, glBindTexture, glEnd, glGetTexParameter, glPrioritizeTextures, glTexImage1D,
glTexImage2D

glArrayElement
[New - Windows 95, OEM Service Release 2]

The glArrayElement function specifies the array elements used to render a vertex.

void glArrayElement(
        GLint index
     );

Parameters
index

An index in the enabled arrays.

Remarks
Use the glArrayElement function within glBegin and glEnd pairs to specify vertex and attribute data for
point, line, and polygon primitives. The glArrayElement function specifies the data for a single vertex
using vertex and attribute data located at the index of the enabled vertex arrays.

You can use glArrayElement to construct primitives by indexing vertex data, rather than by streaming
through arrays of data in first-to-last order. Because glArrayElement specifies a single vertex only, you
can explicitly specify attributes for individual primitives. For example, you can set a single normal for each
individual triangle.

When you include calls to glArrayElement in display lists, the necessary array data, determined by the
array pointers and enable values, is entered in the display list also. Array pointer and enable values are
determined when display lists are created, not when display lists are executed.

You can read and cache static array data at any time with glArrayElement. When you modify the
elements of a static array without specifying the array again, the results of any subsequent calls to
glArrayElement are undefined.

When you call glArrayElement without first calling glEnableClientState(GL_VERTEX_ARRAY), no
drawing occurs, but the attributes corresponding to enabled arrays are modified. Although no error is
generated when you specify an array within glBegin and glEnd pairs, the results are undefined.

See Also
glBegin, glColorPointer, glDrawArrays, glEdgeFlagPointer, glEnableClientState, glEnd,
glGetPointerv, glGetString, glIndexPointer, glNormalPointer, glTexCoordPointer, glVertexPointer

glBegin, glEnd
[New - Windows 95, OEM Service Release 2]

The glBegin and glEnd functions delimit the vertices of a primitive or a group of like primitives.

void glBegin(
        GLenum mode
     );

void glEnd(
        void
     );

Parameters
mode

The primitive or primitives that will be created from vertices presented between glBegin and the
subsequent glEnd. The following are accepted symbolic constants and their meanings:
GL_POINTS

Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
GL_LINES

Treats each pair of vertices as an independent line segment. Vertices 2n - 1 and 2n define line n.
N/2 lines are drawn.

GL_LINE_STRIP
Draws a connected group of line segments from the first vertex to the last. Vertices n and n+1
define line n. N - 1 lines are drawn.

GL_LINE_LOOP
Draws a connected group of line segments from the first vertex to the last, then back to the first.
Vertices n and n+1 define line n. The last line, however, is defined by vertices N and 1. N lines are
drawn.

GL_TRIANGLES
Treats each triplet of vertices as an independent triangle. Vertices 3n - 2, 3n -1, and 3n define
triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each vertex presented after the
first two vertices. For odd n, vertices n, n + 1, and n + 2 define triangle n. For even n, vertices n +
1, n, and n + 2 define triangle n. N - 2 triangles are drawn.

GL_TRIANGLE_FAN
Draws a connected group of triangles. One triangle is defined for each vertex presented after the
first two vertices. Vertices 1, n + 1, and n + 2 define triangle n. N - 2 triangles are drawn.

GL_QUADS
Treats each group of four vertices as an independent quadrilateral. Vertices 4n - 3, 4n - 2, 4n - 1,
and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

GL_QUAD_STRIP
Draws a connected group of quadrilaterals. One quadrilateral is defined for each pair of vertices
presented after the first pair. Vertices 2n - 1, 2n, 2n + 2, and 2n + 1 define quadrilateral n. N
quadrilaterals are drawn. Note that the order in which vertices are used to construct a quadrilateral
from strip data is different from that used with independent data.

GL_POLYGON
Draws a single, convex polygon. Vertices 1 through N define this polygon.

Remarks
The glBegin and glEnd functions delimit the vertices that define a primitive or a group of like primitives.

The glBegin function accepts a single argument that specifies which of ten ways the vertices are
interpreted. Taking n as an integer count starting at one, and N as the total number of vertices specified,
the interpretations are as follows:

· You can use only a subset of OpenGL functions between glBegin and glEnd. The functions you can
use are:
glVertex
glColor
glIndex
glNormal
glTexCoord
glEvalCoord
glEvalPoint
glMaterial
glEdgeFlag
You can also use glCallList or glCallLists to execute display lists that include only the preceding
functions. If any other OpenGL function is called between glBegin and glEnd, the error flag is set and
the function is ignored.

· Regardless of the value chosen for mode in glBegin, there is no limit to the number of vertices you
can define between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are
incompletely specified are not drawn. Incomplete specification results when either too few vertices are
provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The
incomplete primitive is ignored; the complete primitives are drawn.

· The minimum specification of vertices for each primitive is:
Minimum Number
of Vertices

Type of Primitive
1 point
2 line
3 triangle
4 quadrilateral
3 polygon

Modes that require a certain multiple of vertices are GL_LINES (2), GL_TRIANGLES (3), GL_QUADS
(4), and GL_QUAD_STRIP (2).

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was set to an unaccepted

value.
GL_INVALID_OPERATION A function other than glVertex,

glColor, glIndex, glNormal,
glTexCoord, glEvalCoord,
glEvalPoint, glMaterial,
glEdgeFlag, glCallList, or
glCallLists was called between
glBegin and the corresponding
glEnd.

GL_INVALID_OPERATION glEnd was called before the
corresponding glBegin was called,
or glBegin was called within a

glBegin/glEnd sequence.

See Also
glCallList, glCallLists, glColor, glEdgeFlag, glEvalCoord, glEvalPoint, glIndex, glMaterial,
glNormal, glTexCoord, glVertex

glBindTexture
[New - Windows 95, OEM Service Release 2]

The glBindTexture function enables the creation of a named texture that is bound to a texture target.

void glBindTexture(
        GLenum target,
        GLuint texture
     );

Parameters
target

The target to which the texture is bound. Must have the value GL_TEXTURE_1D or
GL_TEXTURE_2D.

texture
The name of a texture; the texture name cannot currently be in use.

Remarks
The glBindTexture function enables you to create a named texture. Calling glBindTexture with target
set to GL_TEXTURE_1D or GL_TEXTURE_2D, and texture set to the name of the new texture you have
created binds the texture name to the appropriate texture target. When a texture is bound to a target, the
previous binding for that target is no longer in effect.

Texture names are unsigned integers with the value zero reserved to represent the default texture for
each texture target. Texture names and the corresponding texture contents are local to the shared
display-list space of the current OpenGL rendering context; two rendering contexts share texture names
only if they also share display lists. You can generate a set of new texture names using glGenTextures.

When a texture is first bound, it assumes the dimensionality of its texture target; a texture bound to
GL_TEXTURE_1D becomes one-dimensional and a texture bound to GL_TEXTURE_2D becomes two-
dimensional. Operations you perform on a texture target also affect a texture bound to the target. When
you query a texture target, the return value is the state of the texture bound to it. Texture targets become
aliases for textures currently bound to them.   

When you bind a texture with glBindTexture, the binding remains active until a different texture is bound
to the same target or you delete the bound texture with the glDeleteTextures function. Once you create a
named texture you can bind it to a texture target that has the same dimensionality as often as needed.

It is usually much faster to use glBindTexture to bind an existing named texture to one of the texture
targets than it is to reload the texture image using glTexImage1D or glTexImage2D. For additional
control of texturing performance, use glPrioritizeTextures.

You can include calls to glBindTexture in display lists.

Note    The glBindTexture function is only available in OpenGL version 1.1 or later.

The following functions retrieve information related to glBindTexture:

glGet with argument GL_TEXTURE_1D_BINDING

glGet with argument GL_TEXTURE_2D_BINDING

Error Codes

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_OPERATION texture did not have the same

dimensionality as target.
GL_INVALID_OPERATION glBindTexture was called between a

call to glBegin and the
corresponding call to glEnd.

See Also
glAreTexturesResident, glDeleteTextures, glGenTextures, glGet, glGetTexParameter, glIsTexture,
glPrioritizeTextures, glTexImage1D, glTexImage2D, glTexParameter

glBitmap   

[New - Windows 95, OEM Service Release 2]

The glBitmap function draws a bitmap.

void glBitmap(
        GLsizei width,
        GLsizei height,
        GLfloat xorig,
        GLfloat yorig,
        GLfloat xmove,
        GLfloat ymove,
        const GLubyte * bitmap
     );

Parameters
width, height

The pixel width and height of the bitmap image.
xorig, yorig

The location of the origin in the bitmap image. The origin is measured from the lower-left corner of the
bitmap, with right and up directions being the positive axes.

xmove, ymove
The x and y offsets to be added to the current raster position after the bitmap is drawn.

bitmap
The address of the bitmap image.

Remarks
A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster position,
and frame buffer pixels corresponding to 1s in the bitmap are written using the current raster color or
index. Frame-buffer pixels corresponding to zeros in the bitmap are not modified.

The bitmap image is interpreted like image data for the glDrawPixels function, with width and height
corresponding to the width and height arguments of that function, and with type set to GL_BITMAP and
format set to GL_COLOR_INDEX. Modes you specify using glPixelStore affect the interpretation of
bitmap image data; modes you specify using glPixelTransfer do not.

If the current raster position is invalid, glBitmap is ignored. Otherwise, the lower-left corner of the bitmap
image is positioned at the following window coordinates:

x (w) = ë x (r) - x (o) û
y (w) = ë y (r) - y (o) û

In these coordinates, (xr, yr) is the raster position, and (xo, yo) is the bitmap origin. Fragments are then
generated for each pixel corresponding to a 1 in the bitmap image. These fragments are generated using
the current raster z-coordinate, color or color index, and current raster texture coordinates. They are then
treated just as if they had been generated by a point, line, or polygon, including texture mapping, fogging,
and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset by
xmove and ymove. No change is made to the z-coordinate of the current raster position, or to the current
raster color, index, or texture coordinates.

The following functions retrieve information related to the glBitmap function:

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE width or height is negative.
GL_INVALID_OPERATION glBitmap is called between a call

to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glDrawPixels, glEnd, glPixelStore, glPixelTransfer, glRasterPos

glBlendFunc   

[New - Windows 95, OEM Service Release 2]

The glBlendFunc function specifies pixel arithmetic.

void glBlendFunc(
        GLenum sfactor,
        GLenum dfactor
     );

Parameters
sfactor

Specifies how the red, green, blue, and alpha source-blending factors are computed. Nine symbolic
constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, and GL_SRC_ALPHA_SATURATE.

dfactor
Specifies how the red, green, blue, and alpha destination-blending factors are computed. Eight
symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, and GL_ONE_MINUS_DST_ALPHA.

Remarks
In RGB mode, pixels can be drawn using a function that blends the incoming (source) RGBA values with
the RGBA values that are already in the frame buffer (the destination values). By default, blending is
disabled. Use glEnable and glDisable with the GL_BLEND argument to enable and disable blending.

When enabled, glBlendFunc defines the operation of blending. The sfactor parameter specifies which of
nine methods is used to scale the source color components. The dfactor parameter specifies which of
eight methods is used to scale the destination color components. The eleven possible methods are
described in the following table. Each method defines four scale factors, one each for red, green, blue,
and alpha.

In the table and in subsequent equations, source and destination color components are referred to as (R
(s) ,G (s) ,B (s) ,A (s)) and (R (d) ,G (d) ,B (d) ,A (d)). They are understood to have integer values between zero
and (k (R) ,k (G) ,k (B) ,k (A)), where

k (c) = 2^m (c) - 1

and (m (R) ,m (G) ,m (B) ,m (A)) is the number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred to as (s (R) ,s (G) ,s (B) ,s (A)) and (d (R) ,d (G) ,d (B) ,d (A)).
The scale factors described in the table, denoted (f (R) ,f (G) ,f (B) ,f (A)), represent either source or
destination factors. All scale factors have range [0,1].

Parameter (f (R) ,f (G) ,f (B) ,f (A))
GL_ZERO (0,0,0,0)
GL_ONE (1,1,1,1)
GL_SRC_COLOR (R (s) /k (R) ,G (s) /k (G) ,B (s) /k (B) ,A (s)

/k (A))
GL_ONE_MINUS_SRC_COLOR (1,1,1,1).

(R (s) /k (R) ,G (s) /k (G) ,B (s) /k (B) ,A (s)
/k (A))

GL_DST_COLOR (R (d) /k (R) ,G (d) /k (G) ,B (d) /k (B) ,A (d)
/k (A))

GL_ONE_MINUS_DST_COLOR (1,1,1,1)
GL_SRC_ALPHA (R (d) /k (R) ,G (d) /k (G) ,B (d) /k (B) ,A (d)

/k (A))
(A (s) /k (A) ,A (s) /k (A) ,A (s) /k (A) ,A (s)

/k (A))
GL_ONE_MINUS_SRC_ALPHA (1,1,1,1)

(A (s) /k (A) ,A (s) /k (A) ,A (s) /k (A) ,A (s)
/k (A))

GL_DST_ALPHA (A (d) /k (A) ,A (d) /k (A) ,A (d) /k (A) ,A (d)
/k (A))

GL_ONE_MINUS_DST_ALPHA (1,1,1,1)
(A (d) /k (A) ,A (d) /k (A) ,A (d) /k (A) ,A (d)
/k (A))

GL_SRC_ALPHA_SATURATE (i,i,i,1)

In the table,

i = min (A (s) ,k (A) - A (d)) / kA

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system uses the
following equations:

R (d) = min(kR,RssR+RddR)
G (d) = min(kG,GssG+GddG)
B (d) = min(kB,BssB+BddB)
A (d) = min(kA,AssA+AddA)

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified,
because blending operates with imprecise integer color values. However, a blend factor that should be
equal to one is guaranteed not to modify its multiplicand, and a blend factor equal to zero reduces its
multiplicand to zero. Thus, for example, when sfactor is GL_SRC_ALPHA, dfactor is
GL_ONE_MINUS_SRC_ALPHA, and A (s) is equal to k (A) , the equations reduce to simple replacement:

R (d) = R (s)

G (d) = G (s)

B (d) = B (s)

A (d) = A (s
)

Examples
Transparency is best implemented using glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this
transparency calculation does not require the presence of alpha bitplanes in the frame buffer.

You can also use glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) for rendering
antialiased points and lines in arbitrary order.

To optimize polygon antialiasing, use glBlendFunc(GL_SRC_ALPHA_SATURATE, GL_ONE) with
polygons sorted from nearest to farthest. (See the GL_POLYGON_SMOOTH argument in glEnable for
information on polygon antialiasing.) Destination alpha bitplanes, which must be present for this blend
function to operate correctly, store the accumulated coverage.

Incoming (source) alpha is a material opacity, ranging from 1.0 (K (A)), representing complete opacity, to

0.0 (0), representing complete transparency.

When you enable more than one color buffer for drawing, each enabled buffer is blended separately, and
the contents of the buffer is used for destination color. (See glDrawBuffer.)

Blending affects only RGB rendering. It is ignored by color-index renderers.

The following functions retrieve information related to glBlendFunc:

glGet with argument GL_BLEND_SRC
glGet with argument GL_BLEND_DST
glIsEnabled with argument GL_BLEND

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM Either sfactor or dfactor was not an

accepted value.
GL_INVALID_OPERATION glBlendFunc was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glAlphaFunc, glBegin, glClear, glDisable, glDrawBuffer, glEnable, glGet, glIsEnabled, glLogicOp,
glStencilFunc

glCallList   

[New - Windows 95, OEM Service Release 2]

The glCallList function executes a display list.

void glCallList(
        GLuint list
     );

Parameters
list

The integer name of the display list to be executed.

Remarks
You start execution of the named display list with glCallList. The functions saved in the display list are
executed in order, just as if you called them without using a display list. If list has not been defined as a
display list, glCallList is ignored.

The glCallList function can appear inside a display list. To avoid the possibility of infinite recursion
resulting from display lists calling one another, a limit is placed on the nesting level of display lists during
display-list execution. This limit is at least 64, and it depends on the implementation.

The OpenGL state is not saved and restored across a call to glCallList. Thus, changes made to the
OpenGL state during the execution of a display list remain after execution of the display list is completed.
To preserve the OpenGL state across glCallList calls, use glPushAttrib, glPopAttrib, glPushMatrix,
and glPopMatrix.

You can execute display lists between a call to glBegin and the corresponding call to glEnd, as long as
the display list includes only functions that are allowed in this interval.

The following functions retrieve information related to glCallList:

glGet with argument GL_MAX_LIST_NESTING
glIsList

See Also
glBegin, glCallLists, glDeleteLists, glEnd, glGenLists, glGet, glIsList, glNewList, glPopAttrib,
glPopMatrix, glPushAttrib, glPushMatrix

glCallLists   

[New - Windows 95, OEM Service Release 2]

The glCallLists function executes a list of display lists.

void glCallLists(
        GLsizei n,
        GLenum type,
        const GLvoid * lists
     );

Parameters
n

The number of display lists to be executed.
type

The type of values in lists. The following symbolic constants are accepted:
GL_BYTE

The lists parameter is treated as an array of signed bytes, each in the range - 128 through 127.
GL_UNSIGNED_BYTE

The lists parameter is treated as an array of unsigned bytes, each in the range 0 through 255.
GL_SHORT

The lists parameter is treated as an array of signed two-byte integers, each in the range    - 32768
through 32767.

GL_UNSIGNED_SHORT
The lists parameter is treated as an array of unsigned two-byte integers, each in the range 0
through 65535.

GL_INT
The lists parameter is treated as an array of signed four-byte integers.

GL_UNSIGNED_INT
The lists parameter is treated as an array of unsigned four-byte integers.

GL_FLOAT
The lists parameter is treated as an array of four-byte, floating-point values.

GL_2_BYTES
The lists parameter is treated as an array of unsigned bytes. Each pair of bytes specifies a single
display-list name. The value of the pair is computed as 256 times the unsigned value of the first
byte plus the unsigned value of the second byte.

GL_3_BYTES
The lists parameter is treated as an array of unsigned bytes. Each triplet of bytes specifies a single
display list name. The value of the triplet is computed as 65536 times the unsigned value of the
first byte, plus 256 times the unsigned value of the second byte, plus the unsigned value of the
third byte.

GL_4_BYTES
The lists parameter is treated as an array of unsigned bytes. Each quadruplet of bytes specifies a
single display list name. The value of the quadruplet is computed as 16777216 times the unsigned
value of the first byte, plus 65536 times the unsigned value of the second byte, plus 256 times the
unsigned value of the third byte, plus the unsigned value of the fourth byte.

lists
The address of an array of name offsets in the display list. The pointer type is void because the
offsets can be bytes, shorts, ints, or floats, depending on the value of type.

Remarks

The glCallLists function causes each display list in the list of names passed as lists to be executed. As a
result, the functions saved in each display list are executed in order, just as if they were called without
using a display list. Names of display lists that have not been defined are ignored.

The glCallLists function provides an efficient means for executing display lists.The n parameter specifies
the number of lists with various name formats (specified by the type parameter) glCallLists executes.

The list of display list names is not null-terminated. Rather, n specifies how many names are to be taken
from lists.

The glListBase function makes an additional level of indirection available. The glListBase function
specifies an unsigned offset that is added to each display list name specified in lists before that display list
is executed.

The glCallLists function can appear inside a display list. To avoid the possibility of infinite recursion
resulting from display lists calling one another, a limit is placed on the nesting level of display lists during
display list execution. This limit must be at least 64, and it depends on the implementation.

The OpenGL state is not saved and restored across a call to glCallLists. Thus, changes made to the
OpenGL state during the execution of the display lists remain after execution is completed. Use
glPushAttrib, glPopAttrib, glPushMatrix, and glPopMatrix to preserve the OpenGL state across
glCallLists calls.

You can execute display lists between a call to glBegin and the corresponding call to glEnd, as long as
the display list includes only functions that are allowed in this interval.

The following functions retrieve information related to the glCallLists function:

glGet with argument GL_LIST_BASE
glGet with argument GL_MAX_LIST_NESTING
glIsList

See Also
glBegin, glCallList, glDeleteLists, glEnd, glGenLists, glGet, glIsList, glListBase, glNewList,
glPopAttrib, glPopMatrix, glPushAttrib, glPushMatrix

glClear   

[New - Windows 95, OEM Service Release 2]

The glClear function clears buffers within the viewport.

void glClear(
        GLbitfield mask
     );

Parameters
mask

Bitwise OR of masks that indicate the buffers to be cleared. The four masks are as follows.
Mask Buffer to be Cleared
GL_COLOR_BUFFER_BIT The buffers currently enabled for

color writing.
GL_DEPTH_BUFFER_BIT The depth buffer.
GL_ACCUM_BUFFER_BIT The accumulation buffer.
GL_STENCIL_BUFFER_BIT The stencil buffer.

Remarks
The glClear function sets the bitplane area of the window to values previously selected by glClearColor,
glClearIndex, glClearDepth, glClearStencil, and glClearAccum. You can clear multiple color buffers
simultaneously by selecting more than one buffer at a time using glDrawBuffer.

The pixel-ownership test, the scissor test, dithering, and the buffer writemasks affect the operation of
glClear. The scissor box bounds the cleared region. The alpha function, blend function, logical operation,
stenciling, texture mapping, and z-buffering are ignored by glClear.

The glClear function takes a single argument (mask) that is the bitwise OR of several values indicating
which buffer is to be cleared.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

If a buffer is not present, a glClear call directed at that buffer has no effect.

The following functions retrieve information related to glClear:

glGet with argument GL_ACCUM_CLEAR_VALUE
glGet with argument GL_DEPTH_CLEAR_VALUE
glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_COLOR_CLEAR_VALUE
glGet with argument GL_STENCIL_CLEAR_VALUE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE Any bit other than the four defined

bits was set in mask.
GL_INVALID_OPERATION glClear was called between a call

to glBegin and the corresponding

call to glEnd.

See Also
glClearAccum, glClearColor, glClearDepth, glClearIndex, glClearStencil, glDrawBuffer, glGet,
glScissor

glClearAccum   

[New - Windows 95, OEM Service Release 2]

The glClearAccum function clears values for the accumulation buffer.

void glClearAccum(
        GLfloat red,
        GLfloat green,
        GLfloat blue,
        GLfloat alpha
     );

Parameters
red, green, blue, alpha

The red, green, blue, and alpha values used when the accumulation buffer is cleared. The default
values are all zero.

Remarks
The glClearAccum function specifies the red, green, blue, and alpha values used by glClear to clear the
accumulation buffer.

Values specified by glClearAccum are clamped to the range [- 1,1].

The following function retrieves information related to glClearAccum:

glGet with argument GL_ACCUM_CLEAR_VALUE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glClearAccum was called

between a call to glBegin and the
corresponding call to glEnd

See Also
glBegin, glClear, glEnd, glGet

glClearColor   

[New - Windows 95, OEM Service Release 2]

The glClearColor function specifies clear values for the color buffers.

void glClearColor(
        GLclampf red,
        GLclampf green,
        GLclampf blue,
        GLclampf alpha
     );

Parameters
red, green, blue, alpha

The red, green, blue, and alpha values used when the color buffers are cleared. The default values
are all zero.

Remarks
The glClearColor function specifies the red, green, blue, and alpha values used by glClear to clear the
color buffers. Values specified by glClearColor are clamped to the range [0,1].

The following functions retrieve information related to the glClearColor function:

glGet with argument GL_ACCUM_CLEAR_VALUE
glGet with argument GL_COLOR_CLEAR_VALUE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glClearColor was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glClear, glEnd, glGet

glClearDepth   

[New - Windows 95, OEM Service Release 2]

The glClearDepth function specifies the clear value for the depth buffer.

void glClearDepth(
        GLclampd depth
     );

Parameters
depth

The depth value used when the depth buffer is cleared.

Remarks
The glClearDepth function specifies the depth value used by glClear to clear the depth buffer. Values
specified by glClearDepth are clamped to the range [0,1].

The following function retrieves information related to the glClearDepth function:

glGet with argument GL_DEPTH_CLEAR_VALUE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glClearDepth was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glClear, glEnd, glGet

glClearIndex   

[New - Windows 95, OEM Service Release 2]

The glClearIndex function specifies the clear value for the color-index buffers.

void glClearIndex(
        GLfloat c
     );

Parameters
c

The index used when the color-index buffers are cleared. The default value is zero.

Remarks
The glClearIndex function specifies the index used by glClear to clear the color-index buffers. The c
parameter is not clamped. Rather, c is converted to a fixed-point value with unspecified precision to the
right of the binary point. The integer part of this value is then masked with 2^m - 1, where m is the number
of bits in a color index stored in the frame buffer.

The following functions retrieve information related to glClearIndex:

glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_INDEX_BITS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glClearIndex was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glClear, glEnd, glGet

glClearStencil   

[New - Windows 95, OEM Service Release 2]

The glClearStencil function specifies the clear value for the stencil buffer.

void glClearStencil(
        GLint s
     );

Parameters
s

The index used when the stencil buffer is cleared. The default value is zero.

Remarks
The glClearStencil function specifies the index used by glClear to clear the stencil buffer. The s
parameter is masked with 2^m - 1, where m is the number of bits in the stencil buffer.

The following functions retrieve information related to the glClearStencil function:

glGet with argument GL_STENCIL_CLEAR_VALUE
glGet with argument GL_STENCIL_BITS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glClearStencil was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glClear, glEnd, glGet

glClipPlane   

[New - Windows 95, OEM Service Release 2]

The glClipPlane function specifies a plane against which all geometry is clipped.

void glClipPlane(
        GLenum plane,
        const GLdouble * equation
     );

Parameters
plane

The clipping plane that is being positioned. Symbolic names of the form GL_CLIP_PLANEi, where i is
an integer between 0 and GL_MAX_CLIP_PLANES - 1, are accepted.

equation
The address of an array of four double-precision floating-point values. These values are interpreted
as a plane equation.

Remarks
Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z. The glClipPlane
function allows the specification of additional planes, not necessarily perpendicular to the x- , y- , or z-
axis, against which all geometry is clipped. Up to GL_MAX_CLIP_PLANES planes can be specified,
where GL_MAX_CLIP_PLANES is at least six in all implementations. Because the resulting clipping
region is the intersection of the defined half-spaces, it is always convex.

The glClipPlane function specifies a half-space using a four-component plane equation. When you call
glClipPlane, equation is transformed by the inverse of the modelview matrix and stored in the resulting
eye coordinates. Subsequent changes to the modelview matrix have no effect on the stored plane-
equation components. If the dot product of the eye coordinates of a vertex with the stored plane equation
components is positive or zero, the vertex is in with respect to that clipping plane. Otherwise, it is out.

Use the glEnable and glDisable functions to enable and disable clipping planes. Call clipping planes with
the argument GL_CLIP_PLANEi, where i is the plane number.

By default, all clipping planes are defined as (0,0,0,0) in eye coordinates and are disabled.

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

The following functions retrieve information related to glClipPlane:

glGetClipPlane
glIsEnabled with argument GL_CLIP_PLANEi

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM plane was not an accepted value.
GL_INVALID_OPERATION glClipPlane was called between a

call to glBegin and the
corresponding call to glEnd.

See Also

glBegin, glDisable, glEnable, glEnd, glGetClipPlane, glIsEnabled

        glColor
[New - Windows 95, OEM Service Release 2]

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s, glColor3ub, glColor3ui, glColor3us,
glColor4b, glColor4d, glColor4f, glColor4i, glColor4s, glColor4ub, glColor4ui, glColor4us,
glColor3bv, glColor3dv, glColor3fv, glColor3iv, glColor3sv, glColor3ubv, glColor3uiv,
glColor3usv, glColor4bv, glColor4dv, glColor4fv, glColor4iv, glColor4sv, glColor4ubv,
glColor4uiv, glColor4usv

These functions set the current color.

void glColor3b(
        GLbyte red,
        GLbyte green,
        GLbyte blue
     );

void glColor3d(
        GLdouble red,
        GLdouble green,
        GLdouble blue
     );

void glColor3f(
        GLfloat red,
        GLfloat green,
        GLfloat blue
     );

void glColor3i(
        GLint red,
        GLint green,
        GLint blue
     );

void glColor3s(
        GLshort red,
        GLshort green,
        GLshort blue
     );

void glColor3ub(
        GLubyte red,
        GLubyte green,
        GLubyte blue
     );

void glColor3ui(
        GLuint red,
        GLuint green,
        GLuint blue
     );

void glColor3us(
        GLushort red,
        GLushort green,
        GLushort blue

     );

void glColor4b(
        GLbyte red,
        GLbyte green,
        GLbyte blue,
        GLbyte alpha
     );

void glColor4d(
        GLdouble red,
        GLdouble green,
        GLdouble blue,
        GLdouble alpha
     );

void glColor4f(
        GLfloat red,
        GLfloat green,
        GLfloat blue,
        GLfloat alpha
     );

void glColor4i(
        GLint red,
        GLint green,
        GLint blue,
        GLint alpha
     );

void glColor4s(
        GLshort red,
        GLshort green,
        GLshort blue,
        GLshort alpha
     );

void glColor4ub(
        GLubyte red,
        GLubyte green,
        GLubyte blue,
        GLubyte alpha
     );

void glColor4ui(
        GLuint red,
        GLuint green,
        GLuint blue,
        GLuint alpha
     );

void glColor4us(
        GLushort red,
        GLushort green,
        GLushort blue,
        GLushort alpha
     );

Parameters
red, green, blue

New red, green, and blue values for the current color.
alpha

A new alpha value for the current color. Included only in the four-argument glColor4 function.

void glColor3bv(
        const GLbyte *v
     );

void glColor3dv(
        const GLdouble *v
     );

void glColor3fv(
        const GLfloat *v
     );

void glColor3iv(
        const GLint *v
     );

void glColor3sv(
        const GLshort *v
     );

void glColor3ubv(
        const GLubyte *v
     );

void glColor3uiv(
        const GLuint *v
     );

void glColor3usv(
        const GLushort *v
     );

void glColor4bv(
        const GLbyte *v
     );

void glColor4dv(
        const GLdouble *v
     );

void glColor4fv(
        const GLfloat *v
     );

void glColor4iv(
        const GLint *v
     );

void glColor4sv(
        const GLshort *v
     );

void glColor4ubv(
        const GLubyte *v

     );

void glColor4uiv(
        const GLuint *v
     );

void glColor4usv(
        const GLushort *v
     );

Parameters
v

A pointer to an array that contains red, green, blue, and (sometimes) alpha values.

Remarks
OpenGL stores both a current single-valued color index and a current four-valued RGBA color. The
glColor function sets a new four-valued RGBA color.

There are two major variants to glColor:

· The glColor3 variants specify new red, green, and blue values explicitly, and set the current alpha
value to 1.0 implicitly.

· The glColor4 variants specify all four color components explicitly.

The glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i functions take three or four
signed byte, short, or long integers as arguments. When you append v to the name, the color functions
can take a pointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent sizes.
Unsigned integer color components, when specified, are linearly mapped to floating-point values such
that the largest representable value maps to 1.0 (full intensity), and zero maps to 0.0 (zero intensity).
Signed integer color components, when specified, are linearly mapped to floating-point values such that
the most positive representable value maps to 1.0, and the most negative representable value maps to -
1.0. Floating-point values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before updating the current
color. However, color components are clamped to this range before they are interpolated or written into a
color buffer.

You can update the current color at any time. In particular, you can call glColor between a call to glBegin
and the corresponding call to glEnd.

The following functions retrieve information related to the glColor functions:

glGet with argument GL_CURRENT_COLOR
glGet with argument GL_RGBA_MODE

See Also
glBegin, glEnd, glGet, glIndex

glColorMask   

[New - Windows 95, OEM Service Release 2]

The glColorMask function enables and disables writing of frame-buffer color components.

void glColorMask(
        GLboolean red,
        GLboolean green,
        GLboolean blue,
        GLboolean alpha
     );

Parameters
red, green, blue, alpha

Specify whether red, green, blue, and alpha can or cannot be written into the frame buffer. The default
values are all GL_TRUE, indicating that the color components can be written.

Remarks
The glColorMask function specifies whether the individual color components in the frame buffer can or
cannot be written. If red is GL_FALSE, for example, no change is made to the red component of any pixel
in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled or
disabled for entire color components.

The following functions retrieve information related to glColorMask:

glGet with argument GL_COLOR_WRITEMASK
glGet with argument GL_RGBA_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glColorMask was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glColor, glDepthMask, glEnd, glGet, glIndex, glIndexMask, glStencilMask

glColorMaterial   

[New - Windows 95, OEM Service Release 2]

The glColorMaterial function causes a material color to track the current color.

void glColorMaterial(
        GLenum face,
        GLenum mode
     );

Parameters
face

Specifies whether front, back, or both front and back material parameters should track the current
color. Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The default value
is GL_FRONT_AND_BACK.

mode
Specifies which of several material parameters track the current color. Accepted values are
GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and GL_AMBIENT_AND_DIFFUSE.
The default value is GL_AMBIENT_AND_DIFFUSE.

Remarks
The glColorMaterial function specifies which material parameters track the current color. When you
enable GL_COLOR_MATERIAL, the material parameter or parameters specified by mode, of the material
or materials specified by face, track the current color at all times. You enable and disable
GL_COLOR_MATERIAL with the functions glEnable and glDisable, which you call with
GL_COLOR_MATERIAL as their argument. By default, GL_COLOR_MATERIAL is disabled.

With glColorMaterial, you can change a subset of material parameters for each vertex using only the
glColor function, without calling glMaterial. If you are going to specify only such a subset of parameters
for each vertex, it is better to do so with glColorMaterial than with glMaterial.

The following functions retrieve information related to glColorMaterial:

glGet with argument GL_COLOR_MATERIAL_PARAMETER
glGet with argument GL_COLOR_MATERIAL_FACE
glIsEnabled with argument GL_COLOR_MATERIAL

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM face or mode was not an accepted

value.
GL_INVALID_OPERATION glColorMaterial was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glColor, glDisable, glEnable, glEnd, glGet, glIsEnabled, glLight, glLightModel, glMaterial

glColorPointer
[New - Windows 95, OEM Service Release 2]

The glColorPointer function defines an array of colors.

void glColorPointer(
        GLint size,
        GLenum type,
        GLsizei stride,
        GLsizei count,
        const GLvoid * pointer
     );

Parameters
size

The number of components per color. The value must be either 3 or 4.
type

The data type of each color component in a color array. Acceptable data types are specified with the
following constants: GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT,
GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE.

stride
The byte offset between consecutive colors. When stride is zero, the colors are tightly packed in the
array.

count
The number of static colors, counting from the first color.

pointer
A pointer to the first component of the first color element in a color array.

Remarks
The glColorPointer function specifies the location and data format of an array of color components to
use when rendering. The stride parameter determines the byte offset from one color to the next, enabling
the packing of vertex attributes in a single array or storage in separate arrays. In some implementations,
storing vertex attributes in a single array can be more efficient than the use of separate arrays. Starting
from the first color array element, count indicates the total number of static elements. You can modify
static elements, but once the elements are modified, you must explicitly specify the array again before
using the array for any rendering. Nonstatic color array elements are not accessed until you call
glDrawArrays or glArrayElement.

The color array is enabled when you specify the GL_COLOR_ARRAY constant with
glEnableClientState. Calling glArrayElement, or glDrawArrays uses the color array that is thus
enabled. By default, the color array is disabled. The glColorPointer calls are not entered in display lists.

When you specify a color array using glColorPointer, the values of all the function's color array
parameters are saved in a client-side state, and you can cache static array elements. Because the color
array parameters are in a client-side state, glPushAttrib and glPopAttrib do not save or restore the
parameters' values.

Although specifying the color array within glBegin and glEnd pairs does not generate an error, the results
are undefined.

The following functions retrieve information related to the glColorPointer function:

glIsEnabled with argument GL_COLOR_ARRAY

glGet with argument GL_COLOR_ARRAY_SIZE
glGet with argument GL_COLOR_ARRAY_TYPE
glGet with argument GL_COLOR_ARRAY_STRIDE
glGet with argument GL_COLOR_ARRAY_COUNT
glGetPointerv with argument GL_COLOR_ARRAY_POINTER

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE size was not 3 or 4.
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE stride or count was negative.

See Also
glArrayElement, glBegin, glDrawArrays, glEdgeFlagPointer, glEnableClientState, glEnd, glGet,
glGetString, glGetPointerv, glIndexPointer, glIsEnabled, glNormalPointer, glPopAttrib,
glPushAttrib, glTexCoordPointer, glVertexPointer

glColorTableEXT
[New - Windows 95, OEM Service Release 2]

The glColorTableEXT function specifies the format and size of a palette for targeted paletted textures.

void glColorTableEXT(
        GLenum target,
        GLenum internalFormat,
        GLsizei width,
        GLenum format,
        GLenum type,
        const GLvoid * data
     );

Parameters
target

The target texture that is to have its palette changed. Must be TEXTURE_1D, TEXTURE_2D,
PROXY_TEXTURE_1D, or PROXY_TEXTURE_2D.

internalFormat
The internal format and resolution of the palette. This parameter can assume one of the following
symbolic values:

Constant Base Format R Bits G Bits B Bits A Bits
GL_R3_G3_B2 GL_RGB 3 3 2 ¾

GL_RGB4 GL_RGB 4 4 4 ¾

GL_RGB5 GL_RGB 5 5 5 ¾

GL_RGB8 GL_RGB 8 8 8 ¾

GL_RGB10 GL_RGB 10 10 10 ¾

GL_RGB12 GL_RGB 12 12 12 ¾

GL_RGB16 GL_RGB 16 16 16 ¾

GL_RGBA2 GL_RGBA 2 2 2 2
GL_RGBA4 GL_RGBA 4 4 4 4
GL_RGB5_A1 GL_RGBA 5 5 5 1
GL_RGBA8 GL_RGBA 8 8 8 8
GL_RGB10_A2 GL_RGBA 10 10 10 2
GL_RGB12 GL_RGBA 12 12 12 12
GL_RGBA16 GL_RGBA 16 16 16 16

width
The size of the palette. Must be 2^n ³ 1 for some integer n.

format
The format of the pixel data. The following symbolic constants are accepted:
GL_RGBA

Each pixel is a group of four components in this order: red, green, blue, alpha. The RGBA format is
determined in this way:
1. The glColorTableEXT function converts floating-point values directly to an internal format
with unspecified precision. Signed integer values are mapped linearly to the internal format such
that the most positive representable integer value maps to 1.0, and the most negative
representable integer value maps to -1.0. Unsigned integer data is mapped similarly: the largest
integer value maps to 1.0, and zero maps to 0.0.
2. The glColorTableEXT function multiplies the resulting color values by GL_c_SCALE and

adds them to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective color
components. The results are clamped to the range [0,1].
3. If GL_MAP_COLOR is TRUE, glColorTableEXT scales each color component by the
size of lookup table GL_PIXEL_MAP_c_TO_c, then replaces the component by the value that it
references in that table; c is R, G, B, or A, respectively.
4. The glColorTableEXT function converts the resulting RGBA colors to fragments by
attaching the current raster position z-coordinate and texture coordinates to each pixel, then
assigning x and y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n/width û
where (x (r) , y (r)) is the current raster position.
5. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. The glColorTableEXT function applies texture mapping, fog, and all the
fragment operations before writing the fragments to the frame buffer.

GL_RED
Each pixel is a single red component.
The glColorTableEXT function converts this component to the internal format in the same way that
the red component of an RGBA pixel is, then converts it to an RGBA pixel with green and blue set
to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

GL_GREEN
Each pixel is a single green component.
The glColorTableEXT function converts this component to the internal format in the same way that
the green component of an RGBA pixel is, and then converts it to an RGBA pixel with red and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read
as an RGBA pixel.

GL_BLUE
Each pixel is a single blue component.
The glColorTableEXT function converts this component to the internal format in the same way that
the blue component of an RGBA pixel is, and then converts it to an RGBA pixel with red and green
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read
as an RGBA pixel.

GL_ALPHA
Each pixel is a single alpha component.
The glColorTableEXT function converts this component to the internal format in the same way that
the alpha component of an RGBA pixel is, and then converts it to an RGBA pixel with red, green,
and blue set to 0.0. After this conversion, the pixel is treated just as if it had been read as an RGBA
pixel.

GL_RGB
Each pixel is a group of three components in this order: red, green, blue.
The glColorTableEXT function converts each component to the internal format in the same way
that the red, green, and blue components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.

GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

type
The data type for data. The following symbolic constants are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.
The following table summarizes the meaning of the valid constants for the type parameter.

Constant Meaning
GL_UNSIGNED_BYTE Unsigned 8-bit integer
GL_BYTE Signed 8-bit integer
GL_UNSIGNED_SHORT Unsigned 16-bit integer
GL_SHORT Signed 16-bit integer
GL_UNSIGNED_INT Unsigned 32-bit integer
GL_INT 32-bit integer
GL_FLOAT Single-precision floating-point

value

data
A pointer to the paletted texture data. The data is treated as single pixels of a 1-D texture palette entry
for a palette entry.

Remarks
Paletted textures are defined with a palette of colors and a set of image data that is composed of indexes
to color entries of a palette (a color table).

The glColorTableEXT function specifies the texture palette of a targeted texture. It takes the data from
memory and converts the data as if each palette entry is a single pixel of a 1-D texture. The
glColorTableEXT function unpacks and converts the data and translates it into an internal format that
matches the given format as closely as possible.

If a palette's width is greater than the range of the color indexes in the texture data, some of the palette
entries are unused. If a palette's width is less than the range of the color indexes in the texture data, the
most significant bits of the texture data are ignored and only the appropriate number of bits in the index
are used when accessing the palette. When you specify a proxy target using PROXY_TEXTURE_1D or
PROXY_TEXTURE_2D, the palette of the proxy texture is resized and its parameters are set but no data
is transferred or accessed.

When the target parameter is GL_PROXY_TEXTURE_1D or GL_PROXY_TEXTURE_2D, and the
implementation does not support the values specified for either format or width, glColorTableEXT can fail
to create the requested color table. In this case, the color table is empty and all parameters retrieved will
be zero. You can determine whether OpenGL supports a particular color table format and size by calling
glColorTableEXT with a proxy target, and then calling glGetColorTableParameterivEXT or
glGetColorTableParameterfvEXT to determine whether the width parameter matches that set by
glColorTableEXT. If the retrieved width is zero, the color table request by glColorTable failed. If the
retrieved width is not zero, you can call glColorTable with the real target with TEXTURE_1D or
TEXTURE_2D to set the color table.

Note    The glColorTableEXT function is an extension function that is not part of the standard
OpenGL library but is part of the GL_EXT_paletted_texture extension. To check whether your
implementation of OpenGL supports glColorTableEXT, call glGetString(GL_EXTENSIONS). If it
returns GL_EXT_paletted_texture, glColorTableEXT is supported. To obtain the function address of
an extension function, call wglGetProcAddress.

To retrieve the actual color table data specified by the glColorTableEXT function, call
glGetColorTableEXT. To retrieve the parameters, such as width and format, of the color table specified
by the glColorTableEXT function, call the glGetColorTableParameterivEXT or
glGetColorTableParameterfvEXT function.

Error Codes
The following are the errors generated and their conditions.

Error Code Condition
GL_INVALID_VALUE width was an invalid integer.
GL_INVALID_ENUM target, internalFormat, format, or

type was not an accepted value.
GL_INVALID_OPERATION glColorTableEXT was called

between glBegin and glEnd pairs.

See Also
glBegin, glColorSubTableEXT, glEnd, glGetColorTableEXT, glGetColorTableParameterfvEXT,
glGetColorTableParameterivEXT, wglGetProcAddress

glColorSubTableEXT
[New - Windows 95, OEM Service Release 2]

The glColorSubTableEXT function specifies a portion of the targeted texture's palette to be replaced.

void glColorSubTableEXT(
        GLenum target,
        GLsizei start,
        GLsizei count,
        GLenum format,
        GLenum type,
        const GLvoid * data
     );

Parameters
target

The target paletted texture that is to have its palette changed. Must be TEXTURE_1D or
TEXTURE_2D.

start
The starting palette index entry of the palette to be changed.

count
The number of palette index entries of the palette to be changed beginning at start. The count
parameter determines the range of palette index entries that are changed.

format
The format of the pixel data. The following symbolic constants are accepted:
GL_RGBA

Each pixel is a group of four components in the following order: red, green, blue, alpha. The RGBA
format is determined in this way:
1. The glColorSubTableEXT function converts floating-point values directly to an internal
format with unspecified precision. Signed integer values are mapped linearly to the internal format
such that the most positive representable integer value maps to 1.0, and the most negative
representable value maps to - 1.0. Unsigned integer data is mapped similarly: the largest integer
value maps to 1.0, and zero maps to 0.0.
2. The glColorSubTableEXT function multiplies the resulting color values by GL_c_SCALE
and adds them to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective
color components. The results are clamped to the range [0,1].
3. If GL_MAP_COLOR is TRUE, glColorSubTableEXT scales each color component by
the size of lookup table GL_PIXEL_MAP_c_TO_c, then replaces the component by the value that it
references in that table; c is R, G, B, or A, respectively.
4. The glColorSubTableEXT function converts the resulting RGBA colors to fragments by
attaching the current raster position z-coordinate and texture coordinates to each pixel, then
assigning x and y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n/width û
where (x (r) , y (r)) is the current raster position.
5. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. The glColorSubTableEXT function applies texture mapping, fog, and all
the fragment operations before writing the fragments to the frame buffer.

GL_RED
Each pixel is a single red component.
The glColorSubTableEXT function converts this component to the internal format in the same way

that the red component of an RGBA pixel is, then converts it to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read
as an RGBA pixel.

GL_GREEN
Each pixel is a single green component.
The glColorSubTableEXT function converts this component to the internal format in the same way
that the green component of an RGBA pixel is, and then converts it to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_BLUE
Each pixel is a single blue component.
The glColorSubTableEXT function converts this component to the internal format in the same way
that the blue component of an RGBA pixel is, and then converts it to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_ALPHA
Each pixel is a single alpha component.
The glColorSubTableEXT function converts this component to the internal format in the same way
that the alpha component of an RGBA pixel is, and then converts it to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just as if it had been read as an
RGBA pixel.

GL_RGB
Each pixel is a group of three components in this order: red, green, blue.
The glColorSubTableEXT function converts each component to the internal format in the same
way that the red, green, and blue components of an RGBA pixel are. The color triple is converted
to an RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated just as if it had
been read as an RGBA pixel.

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.
GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

type
The data type for data. The following symbolic constants are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.
The following table summarizes the meaning of the valid constants for the type parameter.

Constant Meaning
GL_UNSIGNED_BYTE Unsigned 8-bit integer
GL_BYTE Signed 8-bit integer
GL_UNSIGNED_SHORT Unsigned 16-bit integer
GL_SHORT Signed 16-bit integer
GL_UNSIGNED_INT Unsigned 32-bit integer
GL_INT 32-bit integer
GL_FLOAT Single-precision floating-point

value

data
A pointer to the paletted texture data. The data is treated as single pixels of a 1-D texture palette entry
for a palette entry.

Remarks
The glColorSubTableEXT function specifies portions of the current targeted texture's palette to be
replaced. Unlike glColorTableEXT, you cannot specify the target parameter to be a proxy texture palette.

Note    The glColorSubTableEXT function is an extension function that is not part of the standard
OpenGL library but is part of the GL_EXT_paletted_texture extension. To check whether your
implementation of OpenGL supports glColorSubTableEXT, call glGetString(GL_EXTENSIONS). If it
returns GL_EXT_paletted_texture, glColorSubTableEXT is supported. To obtain the function address
of an extension function, call wglGetProcAddress.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE start or count was an invalid integer.
GL_INVALID_ENUM target, format, or type was not an

accepted value.
GL_INVALID_OPERATION glColorSubTableEXT was called

between glBegin and glEnd pairs.

See Also
glBegin, glColorTableEXT, glEnd, glGetColorTableEXT, glGetColorTableParameterfvEXT,
glGetColorTableParameterivEXT, glGetString, wglGetProcAddress

glCopyPixels   

[New - Windows 95, OEM Service Release 2]

The glCopyPixels function copies pixels in the frame buffer.

void glCopyPixels(
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height,
        GLenum type
     );

Parameters
x, y

The window coordinates of the lower-left corner of the rectangular region of pixels to be copied.
width, height

The dimensions of the rectangular region of pixels to be copied. Both must be nonnegative.
type

Specifies whether glCopyPixels is to copy color values, depth values, or stencil values. The
acceptable symbolic constants are:
GL_COLOR

The glCopyPixels function reads indexes or RGBA colors from the buffer currently specified as the
read source buffer (see glReadBuffer).
If OpenGL is in color-index mode:
1. Each index that is read from this buffer is converted to a fixed-point format with an
unspecified number of bits to the right of the binary point.
2. Each index is shifted left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET.
If GL_INDEX_SHIFT is negative, the shift is to the right. In either case, zero bits fill otherwise
unspecified bit locations in the result.
3. If GL_MAP_COLOR is true, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_I_TO_I.
4. Whether the lookup replacement of the index is done or not, the integer part of the index
is then ANDed with 2^b - 1, where b is the number of bits in a color-index buffer.
If OpenGL is in RGBA mode:
1. The red, green, blue, and alpha components of each pixel that is read are converted to
an internal floating-point format with unspecified precision.
2. The conversion maps the largest representable component value to 1.0, and component
value zero to 0.0.
3. The resulting floating-point color values are then multiplied by GL_c_SCALE and added
to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective color components.
4. The results are clamped to the range [0,1].
5. If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, and then replaced by the value that it references in that table; c is R, G,
B, or A, respectively.
The resulting indexes or RGBA colors are then converted to fragments by attaching the current
raster position z-coordinate and texture coordinates to each pixel, and then assigning window
coordinates (x (r) + i, y (r) + j), where (x (r) y (r)) is the current raster position, and the pixel was the
pixel in the i position in the j row. These pixel fragments are then treated just like the fragments
generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment

operations are applied before the fragments are written to the frame buffer.
GL_DEPTH

Depth values are read from the depth buffer and converted directly to an internal floating-point
format with unspecified precision. The resulting floating-point depth value is then multiplied by
GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1].
The resulting depth components are then converted to fragments by attaching the current raster
position color or color index and texture coordinates to each pixel, then assigning window
coordinates (x (r) + i, y (r) + j), where (x (r) , y (r)) is the current raster position, and the pixel was the
pixel in the i position in the j row. These pixel fragments are then treated just like the fragments
generated by rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment
operations are applied before the fragments are written to the frame buffer.

GL_STENCIL
Stencil indexes are read from the stencil buffer and converted to an internal fixed-point format with
an unspecified number of bits to the right of the binary point. Each fixed-point index is then shifted
left by GL_INDEX_SHIFT bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is
negative, the shift is to the right. In either case, zero bits fill otherwise unspecified bit locations in
the result. If GL_MAP_STENCIL is true, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or
not, the integer part of the index is then ANDed with 2^b - 1, where b is the number of bits in the
stencil buffer. The resulting stencil indexes are then written to the stencil buffer such that the index
read from the i location of the j row is written to location (x (r) + i, y (r) + j), where (x (r) , y (r)) is the
current raster position. Only the pixel-ownership test, the scissor test, and the stencil writemask
affect these writes.

Remarks
The glCopyPixels function copies a screen-aligned rectangle of pixels from the specified frame buffer
location to a region relative to the current raster position. Its operation is well defined only if the entire
pixel source region is within the exposed portion of the window. Results of copies from outside the
window, or from regions of the window that are not exposed, are hardware dependent and undefined.

The x and y parameters specify the window coordinates of the lower-left corner of the rectangular region
to be copied. The width and height parameters specify the dimensions of the rectangular region to be
copied. Both width and height must be nonnegative.

Several parameters control the processing of the pixel data while it is being copied. These parameters are
set with three functions: glPixelTransfer, glPixelMap, and glPixelZoom. This topic describes the effects
on glCopyPixels of most, but not all, of the parameters specified by these three functions.

The glCopyPixels function copies values from each pixel with the lower-left corner at (x + i, y + j) for
0£i<width and 0£j<height. This pixel is said to be the i pixel in the j row. Pixels are copied in row order
from the lowest to the highest row, left to right in each row.

The type parameter specifies whether color, depth, or stencil data is to be copied.

The rasterization described thus far assumes pixel zoom factors of 1.0. If you use glPixelZoom to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (x (r) , y (r)) is the
current raster position, and a given pixel is in the i location in the j row of the source pixel rectangle, then
fragments are generated for pixels whose centers are in the rectangle with corners at

(x (r) + zoom (x) i, y (r) + zoom (y) j)

and

(x (r) + zoom (x) (i + 1), y (r) + zoom (y) (j + 1))

where zoom (x) is the value of GL_ZOOM_X and zoom (y) is the value of GL_ZOOM_Y.

Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

The following functions retrieve information related to glCopyPixels:

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

To copy the color pixel in the lower-left corner of the window to the current raster position, use

glCopyPixels(0, 0, 1, 1, GL_COLOR);

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE Either width or height was

negative.
GL_INVALID_OPERATION type was GL_DEPTH and there

was no depth buffer.
GL_INVALID_OPERATION type was GL_STENCIL and there

was no stencil buffer.
GL_INVALID_OPERATION glCopyPixels was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glDepthFunc, glDrawBuffer, glDrawPixels, glEnd, glGet, glPixelMap, glPixelStore,
glPixelTransfer, glPixelZoom, glRasterPos, glReadBuffer, glReadPixels, glStencilFunc

glCopyTexImage1D
[New - Windows 95, OEM Service Release 2]

The glCopyTexImage1D function copies pixels from the frame buffer into a one-dimensional texture
image.

void glCopyTexImage1D(
        GLenum target,
        GLint level,
        GLenum
internalFormat,
        GLint x,
        GLint y,
        GLsizei width,
        GLint border
     );

Parameters
target

The target for which the image data will be changed. Must have the value GL_TEXTURE_1D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
internalFormat

The internal format and resolution of the texture data. The values 1, 2, 3, and 4 are not accepted for
internalFormat. This parameter can assume one of the following symbolic values:

Constant Base Format R Bits G Bits B Bits A Bits L Bits I Bits
ALPHA ¾ ¾ ¾ ¾ ¾ ¾ ¾

ALPHA4 ALPHA ¾ ¾ ¾ 4 ¾ ¾

ALPHA8 ALPHA ¾ ¾ ¾ 8 ¾ ¾

ALPHA12 ALPHA ¾ ¾ ¾ 12 ¾ ¾

ALPHA16 ALPHA ¾ ¾ ¾ 16 ¾ ¾

LUMINANCE ¾ ¾ ¾ ¾ ¾ ¾ ¾

LUMINANCE4 LUMINANCE ¾ ¾ ¾ ¾ 4 ¾

LUMINANCE8 LUMINANCE ¾ ¾ ¾ ¾ 8 ¾

LUMINANCE12 LUMINANCE ¾ ¾ ¾ ¾ 12 ¾

LUMINANCE16 LUMINANCE ¾ ¾ ¾ ¾ 16 ¾

LUMINANCE_ALPHA ¾ ¾ ¾ ¾ ¾ ¾ ¾

LUMINANCE4_ALPHA4 LUMINANCE_ALPH
A

¾ ¾ ¾ 4 4 ¾

LUMINANCE6_ALPHA2 LUMINANCE_ALPH
A

¾ ¾ ¾ 2 6 ¾

LUMINANCE8_ALPHA8 LUMINANCE_ALPH
A

¾ ¾ ¾ 8 8 ¾

LUMINANCE12_ALPHA4 LUMINANCE_ALPH
A

¾ ¾ ¾ 4 12 ¾

LUMINANCE12_ALPHA1
2

LUMINANCE_ALPH
A

¾ ¾ ¾ 12 12 ¾

LUMINANCE16_ALPHA1
6

LUMINANCE_ALPH
A

¾ ¾ ¾ 16 16 ¾

INTENSITY ¾ ¾ ¾ ¾ ¾ ¾ ¾

INTENSITY4 INTENSITY ¾ ¾ ¾ ¾ ¾ 4
INTENSITY8 INTENSITY ¾ ¾ ¾ ¾ ¾ 8
INTENSITY12 INTENSITY ¾ ¾ ¾ ¾ ¾ 12
INTENSITY16 INTENSITY ¾ ¾ ¾ ¾ ¾ 16
GL_RGB ¾ ¾ ¾ ¾ ¾ ¾ ¾

GL_R3_G3_B2 GL_RGB 3 3 2 ¾ ¾ ¾

GL_RGB4 GL_RGB 4 4 4 ¾ ¾ ¾

GL_RGB5 GL_RGB 5 5 5 ¾ ¾ ¾

GL_RGB8 GL_RGB 8 8 8 ¾ ¾ ¾

GL_RGB10 GL_RGB 10 10 10 ¾ ¾ ¾

GL_RGB12 GL_RGB 12 12 12 ¾ ¾ ¾

GL_RGB16 GL_RGB 16 16 16 ¾ ¾ ¾

GL_RGBA ¾ ¾ ¾ ¾ ¾ ¾ ¾

GL_RGBA2 GL_RGBA 2 2 2 2 ¾ ¾

GL_RGBA4 GL_RGBA 4 4 4 4 ¾ ¾

GL_RGB5_A1 GL_RGBA 5 5 5 1 ¾ ¾

GL_RGBA8 GL_RGBA 8 8 8 8 ¾ ¾

GL_RGB10_A2 GL_RGBA 10 10 10 2 ¾ ¾

GL_RGBA12 GL_RGBA 12 12 12 12 ¾ ¾

GL_RGBA16 GL_RGBA 16 16 16 16 ¾ ¾

x, y
The window coordinates of the lower-left corner of the row of pixels to be copied.

width
The width of the texture image. Must be 2^n + 2 * border for some integer n. The height of the texture
image is 1.

border
The width of the border. Must be either zero or 1.

Remarks
The glCopyTexImage1D function defines a one-dimensional texture image using pixels from the current
frame buffer, rather than from main memory as is the case for glTexImage1D.

Using the mipmap level specified with level, texture arrays are defined as a pixel row aligned with the
lower-left corner of the window at the coordinates specified by x and y, with a length equal to width + 2 *
border. The internal format of the texture array is specified with the internalFormat parameter.     

The glCopyTexImage1D function processes the pixels in a row in the same way as glCopyPixels,
except that before the final conversion of the pixels, all pixel component values are clamped to the range
[0, 1] and converted to the texture's internal format for storage in the texture array. Pixel ordering is
determined with lower x coordinates corresponding to lower texture coordinates. If any of the pixels within
a specified row of the current frame buffer are outside the window associated with the current rendering
context, then their values are undefined.

You cannot include calls to glCopyTexImage1D in display lists.

Note    The glCopyTexImage1D function is only available in OpenGL version 1.1 or later.

Texturing has no effect in color-index mode. The glPixelStore and glPixelTransfer functions affect

texture images in exactly the way they affect glDrawPixels.

The following function retrieves information related to glCopyTexImage1D:

glIsEnabled with argument GL_TEXTURE_1D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE level was less than zero or greater

than log sub 2(max), where max is the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE border was not zero or 1.
GL_INVALID_VALUE width was less than zero, greater than

2 + GL_MAX_TEXTURE_SIZE; or
width cannot be represented as 2^n +
2 * border for some integer n.

GL_INVALID_OPERATION glCopyTexImage1D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glCopyPixels, glCopyTexImage2D, glDrawPixels, glFog, glPixelStore, glPixelTransfer, glTexEnv,
glTexGen, glTexImage1D, glTexImage2D, glTexParameter

glCopyTexImage2D
[New - Windows 95, OEM Service Release 2]

The glCopyTexImage2D function copies pixels from the frame buffer into a two-dimensional texture
image.

void glCopyTexImage2D(
        GLenum target,
        GLint level,
        GLenum internalFormat,
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height,
        GLint border
     );

Parameters
target

The target to which the image data will be changed. Must have the value GL_TEXTURE_2D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
internalFormat

The internal format and resolution of the texture data. The values 1, 2, 3, and 4 are not accepted for
internalFormat. The parameter can assume one of the following symbolic values:

Constant Base Format R Bits G Bits B Bits A Bits L Bits I Bits
ALPHA ¾ ¾ ¾ ¾ ¾ ¾ ¾

ALPHA4 ALPHA ¾ ¾ ¾ 4 ¾ ¾

ALPHA8 ALPHA ¾ ¾ ¾ 8 ¾ ¾

ALPHA12 ALPHA ¾ ¾ ¾ 12 ¾ ¾

ALPHA16 ALPHA ¾ ¾ ¾ 16 ¾ ¾

LUMINANCE ¾ ¾ ¾ ¾ ¾ ¾ ¾

LUMINANCE4 LUMINANCE ¾ ¾ ¾ ¾ 4 ¾

LUMINANCE8 LUMINANCE ¾ ¾ ¾ ¾ 8 ¾

LUMINANCE12 LUMINANCE ¾ ¾ ¾ ¾ 12 ¾

LUMINANCE16 LUMINANCE ¾ ¾ ¾ ¾ 16 ¾

LUMINANCE_ALPHA ¾ ¾ ¾ ¾ ¾ ¾ ¾

LUMINANCE4_ALPHA4 LUMINANCE_ALPH
A

¾ ¾ ¾ 4 4 ¾

LUMINANCE6_ALPHA2 LUMINANCE_ALPH
A

¾ ¾ ¾ 2 6 ¾

LUMINANCE8_ALPHA8 LUMINANCE_ALPH
A

¾ ¾ ¾ 8 8 ¾

LUMINANCE12_ALPHA4 LUMINANCE_ALPH
A

¾ ¾ ¾ 4 12 ¾

LUMINANCE12_ALPHA1
2

LUMINANCE_ALPH
A

¾ ¾ ¾ 12 12 ¾

LUMINANCE16_ALPHA1
6

LUMINANCE_ALPH
A

¾ ¾ ¾ 16 16 ¾

INTENSITY ¾ ¾ ¾ ¾ ¾ ¾ ¾

INTENSITY4 INTENSITY ¾ ¾ ¾ ¾ ¾ 4
INTENSITY8 INTENSITY ¾ ¾ ¾ ¾ ¾ 8
INTENSITY12 INTENSITY ¾ ¾ ¾ ¾ ¾ 12
INTENSITY16 INTENSITY ¾ ¾ ¾ ¾ ¾ 16
GL_RGB ¾ ¾ ¾ ¾ ¾ ¾ ¾

GL_R3_G3_B2 GL_RGB 3 3 2 ¾ ¾ ¾

GL_RGB4 GL_RGB 4 4 4 ¾ ¾ ¾

GL_RGB5 GL_RGB 5 5 5 ¾ ¾ ¾

GL_RGB8 GL_RGB 8 8 8 ¾ ¾ ¾

GL_RGB10 GL_RGB 10 10 10 ¾ ¾ ¾

GL_RGB12 GL_RGB 12 12 12 ¾ ¾ ¾

GL_RGB16 GL_RGB 16 16 16 ¾ ¾ ¾

GL_RGBA ¾ ¾ ¾ ¾ ¾ ¾ ¾

GL_RGBA2 GL_RGBA 2 2 2 2 ¾ ¾

GL_RGBA4 GL_RGBA 4 4 4 4 ¾ ¾

GL_RGB5_A1 GL_RGBA 5 5 5 1 ¾ ¾

GL_RGBA8 GL_RGBA 8 8 8 8 ¾ ¾

GL_RGB10_A2 GL_RGBA 10 10 10 2 ¾ ¾

GL_RGBA12 GL_RGBA 12 12 12 12 ¾ ¾

GL_RGBA16 GL_RGBA 16 16 16 16 ¾ ¾

x, y
The window coordinates of the lower-left corner of the rectangular region of pixels to be copied.

width
The width of the texture image. Must be 2^n + 2 * border for some integer n.

height
The height of the texture image. Must be 2^n + 2 * border for some integer n.

border
The width of the border. Must be either zero or 1.

Remarks
The glCopyTexImage2D function defines a two-dimensional texture image using pixels from the current
frame buffer, rather than from main memory as is the case for glTexImage2D.

Using the mipmap level specified with level, texture arrays are defined as a rectangle of pixels with the
lower-left corner located at the coordinates x and y, width equal to width + (2 * border), and a height equal
to height + (2 * border). The internal format of the texture array is specified with the internalFormat
parameter.

The glCopyTexImage2D function processes the pixels in a row in the same way as glCopyPixels except
that before the final conversion of the pixels, all pixel component values are clamped to the range [0, 1]
and converted to the texture's internal format for storage in the texture array. Pixel ordering is determined
with lower x and y coordinates corresponding to lower s and t texture coordinates. If any of the pixels
within a specified row of the current frame buffer are outside the window associated with the current
rendering context, then their values are undefined.

You cannot include calls to glCopyTexImage2D in display lists.

Note    The glCopyTexImage2D function is only available in OpenGL version 1.1 or later.

Texturing has no effect in color-index mode. The glPixelStore and glPixelTransfer functions affect
texture images in exactly the way they affect glDrawPixels.

The following function retrieves information related to glCopyTexImage2D:

glIsEnabled with argument GL_TEXTURE_2D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE level was less than zero or greater

than log sub 2(max), where max is the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE border was not zero or 1.
GL_INVALID_VALUE width was less than zero, greater than

2 + GL_MAX_TEXTURE_SIZE; or
width cannot be represented as 2^n +
2 * border for some integer n.

GL_INVALID_OPERATION glCopyTexImage2D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glCopyTexImage1D, glDrawPixels, glEnd, glFog, glPixelStore, glPixelTransfer, glTexEnv,
glTexGen, glTexImage1D, glTexImage2D, glTexParameter

glCopyTexSubImage1D
[New - Windows 95, OEM Service Release 2]

The glCopyTexSubImage1D function copies a sub-image of a one-dimensional texture image from the
frame buffer.

void glCopyTexSubImage1D(
        GLenum target,
        GLint level,
        GLint xoffset,
        GLint x,
        GLint y,
        GLsizei width
     );

Parameters
target

The target to which the image data will be changed. Must have the value GL_TEXTURE_1D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
xoffset

The texel offset within the texture array.
x, y

The window coordinates of the lower-left corner of the row of pixels to be copied.
width

The width of the sub-image of the texture image. Specifying a texture sub-image with zero width has
no effect.

Remarks
The glCopyTexSubImage1D function replaces a portion of a one-dimensional texture image using pixels
from the current frame buffer, rather than from main memory as is the case for glTexSubImage1D.

A row of pixels beginning with the window coordinates specified by x and y and with the length width
replaces the portion of the texture array with the indexes xoffset through xoffset + (width - 1). The
destination in the texture array cannot include any texels outside the originally specified texture array.

The glCopyTexSubImage1D function processes the pixels in a row in the same way as glCopyPixels
except that before the final conversion of the pixels, all pixel component values are clamped to the range
[0, 1] and converted to the texture's internal format for storage in the texture array. Pixel ordering is
determined with lower x coordinates corresponding to lower texture coordinates. If any of the pixels within
a specified row of the current frame buffer are outside the window associated with the current rendering
context, then their values are undefined.

No change is made to the internalFormat, width, or border parameter of the specified texture array or to
texel values outside the specified texture sub-image.

You cannot include calls to glCopyTexSubImage1D in display lists.

Note    The glCopyTexSubImage1D function is only available in OpenGL version 1.1 or later.

Texturing has no effect in color-index mode. The glPixelStore and glPixelTransfer functions affect
texture images in exactly the way they affect the way pixels are drawn using glDrawPixels.

The following functions retrieve information related to glCopyTexSubImage1D:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE level was less than zero or greater

than log sub 2(max), where max is the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE xoffset was less than border or
(xoffset + width) was greater than (w
+ border), where w is
GL_TEXTURE_WIDTH and border is
GL_TEXTURE_BORDER. Note that
w includes twice the border width.

GL_INVALID_VALUE width was less than border or y was
less than border, where border is the
border width of the texture array.

GL_INVALID_OPERATION The texture array was not defined by
a previous glTexImage1D operation.

GL_INVALID_OPERATION glCopyTexSubImage1D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glCopyTexSubImage2D, glDrawPixels, glEnd, glFog, glPixelStore, glPixelTransfer,
glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexSubImage1D, glTexSubImage2D,
glTexParameter

glCopyTexSubImage2D
[New - Windows 95, OEM Service Release 2]

The glCopyTexSubImage2D function copies a sub-image of a two-dimensional texture image from the
frame buffer.

void glCopyTexSubImage2D(
        GLenum target,
        GLint level,
        GLint xoffset,
        GLint yoffset,
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height
     );

Parameters
target

The target to which the image data will be changed and can only have the value GL_TEXTURE_2D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
xoffset

The texel offset in the x direction within the texture array.
yoffset

The texel offset in the y direction within the texture array.
x, y

The window coordinates of the lower-left corner of the row of pixels to be copied.
width

The width of the sub-image of the texture image. Specifying a texture sub-image with zero width has
no effect.

height
The height of the sub-image of the texture image. Specifying a texture sub-image with zero width has
no effect.

Remarks
The glCopyTexSubImage2D function replaces a rectangular portion of a two-dimensional texture image
with pixels from the current frame buffer, rather than from main memory as is the case for
glTexSubImage2D.

A rectangle of pixels beginning with the x and y window coordinates and with the dimensions width and
height replaces the portion of the texture array with the indexes xoffset through xoffset + (width - 1), with
the indexes yoffset through yoffset + (width - 1) at the mipmap level specified by level. The destination
rectangle in the texture array cannot include any texels outside the originally specified texture array.

The glCopyTexSubImage2D function processes the pixels in a row in the same way as glCopyPixels
except that before the final conversion of the pixels, all pixel component values are clamped to the range
[0, 1] and converted to the texture's internal format for storage in the texture array. Pixel ordering is
determined with lower x coordinates corresponding to lower texture coordinates. If any of the pixels within
a specified row of the current frame buffer are outside the window associated with the current rendering
context, then their values are undefined.

If any of the pixels within the specified rectangle of the current frame buffer are outside the read window

associated with the current rendering context, then the values obtained for those pixels are undefined. No
change is made to the internalFormat, width, height, or border parameter of the specified texture array or
to texel values outside the specified texture sub-image.

You cannot include calls to glCopyTexSubImage2D in display lists.

Note    The glCopyTexSubImage2D function is only available in OpenGL version 1.1 or later.

Texturing has no effect in color-index mode. The glPixelStore and glPixelTransfer functions affect
texture images in exactly the way they affect the way pixels are drawn using glDrawPixels.

The following functions retrieve information related to glCopyTexSubImage2D:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE level was less than zero or greater

than log sub 2(max), where max is the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE xoffset was less than border, (xoffset
+ width) was greater than (w +
border), yoffset was less than border,
or (yoffset + height) was greater than
(h + border), where w is
GL_TEXTURE_WIDTH, h is
GL_TEXTURE_HEIGHT, and border
is GL_TEXTURE_BORDER. Note
that w includes twice the border width.

GL_INVALID_VALUE width was less than border or y was
less than border, where border is the
border width of the texture array.

GL_INVALID_OPERATION The texture array was not defined by
a previous glTexImage2D operation.

GL_INVALID_OPERATION glCopyTexSubImage2D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glCopyPixels, glCopyTexSubImage1D, glDrawPixels, glEnd, glFog, glPixelStore,
glPixelTransfer, glTexEnv, glTexGen, glTexImage2D, glTexSubImage2D, glTexParameter

glCullFace   

[New - Windows 95, OEM Service Release 2]

The glCullFace function specifies whether front- or back-facing facets can be culled.

void glCullFace(
        GLenum mode
     );

Parameters
mode

Specifies whether front- or back-facing facets are candidates for culling. Symbolic constants
GL_FRONT and GL_BACK are accepted. The default value is GL_BACK.

Remarks
The glCullFace function specifies whether front- or back-facing facets are culled (as specified by mode)
when facet culling is enabled. You enable and disable facet culling using glEnable and glDisable with the
argument GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons, and rectangles.

The glFrontFace function specifies which of the clockwise and counterclockwise facets are front-facing
and back-facing.

The following functions retrieve information related to glCullFace:

glGet with argument GL_CULL_FACE_MODE
glIsEnabled with argument GL_CULL_FACE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION glCullFace was called between a

call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glDisable, glEnable, glEnd, glFrontFace, glGet, glIsEnabled

glDeleteLists   

[New - Windows 95, OEM Service Release 2]

The glDeleteLists function deletes a contiguous group of display lists.

void glDeleteLists(
        GLuint list,
        GLsizei range
     );

Parameters
list

The integer name of the first display list to delete.
range

The number of display lists to delete.

Remarks
The glDeleteLists function causes a contiguous group of display lists to be deleted. The list parameter is
the name of the first display list to be deleted, and range is the number of display lists to delete. All display
lists d with list £ d £ list + range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for
reuse at a later time. Names within the range that do not have an associated display list are ignored. If
range is zero, nothing happens.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE range was negative.
GL_INVALID_OPERATION glDeleteLists was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glCallList, glCallLists, glEnd, glGenLists, glIsList, glNewList

glDeleteTextures
[New - Windows 95, OEM Service Release 2]

The glDeleteTextures function deletes named textures.

void glDeleteTextures(
        GLsizei n,
        const GLuint *
textures
     );

Parameters
n

The number of textures to be deleted.
textures

An array of textures to be deleted.

Remarks
The glDeleteTextures function deletes n textures named by the elements of the array textures. After a
texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for example, by
glGenTextures). The glDeleteTextures function ignores zeros and names that do not correspond to
existing textures.

If a texture that is currently bound is deleted, the binding reverts to zero (the default texture).

You cannot include calls to glDeleteTextures in display lists.

Note    The glDeleteTextures function is only available in OpenGL version 1.1 or later.

The following function retrieves information related to glDeleteTextures:

glIsTexture

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE n was a negative value.
GL_INVALID_OPERATION glDeleteTextures was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glAreTexturesResident, glBegin, glBindTexture, glEnd, glGenTextures, glGet, glGetTexParameter,
glIsTexture, glPrioritizeTextures, glTexGen, glTexImage1D, glTexImage2D, glTexParameter

glDepthFunc   

[New - Windows 95, OEM Service Release 2]

The glDepthFunc function specifies the value used for depth-buffer comparisons.

void glDepthFunc(
        GLenum func
     );

Parameters
func

The depth-comparison function. The following symbolic constants are accepted.
Symbolic Constant Meaning
GL_NEVER Never passes.
GL_LESS Passes if the incoming z value is less

than the stored z value. This is the
default value.

GL_EQUAL Passes if the incoming z value is equal
to the stored z value.

GL_LEQUAL Passes if the incoming z value is less
than or equal to the stored z value.

GL_GREATER Passes if the incoming z value is greater
than the stored z value.

GL_NOTEQUAL Passes if the incoming z value is not
equal to the stored z value.

GL_GEQUAL Passes if the incoming z value is greater
than or equal to the stored z value.

GL_ALWAYS Always passes.

Remarks
The glDepthFunc function specifies the function used to compare each incoming pixel z value with the z
value present in the depth buffer. The comparison is performed only if depth testing is enabled. (See
glEnable with the argument GL_DEPTH_TEST.)

Initially, depth testing is disabled.

The following functions retrieve information related to glDepthFunc:

glGet with argument GL_DEPTH_FUNC
glIsEnabled with argument GL_DEPTH_TEST

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM func was not an accepted value.
GL_INVALID_OPERATION glDepthFunc was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glDepthRange, glEnable, glEnd, glGet, glIsEnabled

glDepthMask   

[New - Windows 95, OEM Service Release 2]

The glDepthMask function enables or disables writing into the depth buffer.

void glDepthMask(
        GLboolean flag
     );

Parameters
flag

Specifies whether the depth buffer is enabled for writing. If flag is zero, depth-buffer writing is
disabled. Otherwise, it is enabled. Initially, depth-buffer writing is enabled.

Remarks
The following function retrieves information related to glDepthMask:

glGet with argument GL_DEPTH_WRITEMASK

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glDepthMask was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glColorMask, glDepthFunc, glDepthRange, glEnd, glGet, glIndexMask, glStencilMask

glDepthRange   

[New - Windows 95, OEM Service Release 2]

The glDepthRange function specifies the mapping of z values from normalized device coordinates to
window coordinates.

void glDepthRange(
        GLclampd znear,
        GLclampd zfar
     );

Parameters
znear

The mapping of the near clipping plane to window coordinates. The default value is 0.
zfar

The mapping of the far clipping plane to window coordinates. The default value is 1.

Remarks
After clipping and division by w, z-coordinates range from -1.0 to 1.0, corresponding to the near and far
clipping planes. The glDepthRange function specifies a linear mapping of the normalized z-coordinates
in this range to window z-coordinates. Regardless of the actual depth buffer implementation, window
coordinate depth values are treated as though they range from 0.0 through 1.0 (like color components).
Thus, the values accepted by glDepthRange are both clamped to this range before they are accepted.

The default mapping of 0,1 maps the near plane to 0 and the far plane to 1. With this mapping, the depth-
buffer range is fully utilized.

It is not necessary that znear be less than zfar. Reverse mappings such as 1,0 are acceptable.

The following function retrieves information related to glDepthRange:

glGet with argument GL_DEPTH_RANGE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glDepthRange was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glDepthFunc, glEnd, glGet, glViewport

glDrawArrays
[New - Windows 95, OEM Service Release 2]

The glDrawArrays function specifies multiple primitives to render.

void glDrawArrays(
        GLenum mode,
        GLint first,
        GLsizei count
     );

Parameters
mode

The kind of primitives to render. The following constants specify acceptable types of primitives:
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON.

first
The starting index in the enabled arrays.

count
The number of indexes to render.

Remarks
With glDrawArrays, you can specify multiple geometric primitives to render. Instead of calling separate
OpenGL functions to pass each individual vertex, normal, or color, you can specify separate arrays of
vertices, normals, and colors to define a sequence of primitives (all the same kind) with a single call to
glDrawArrays.

When you call glDrawArrays, count sequential elements from each enabled array are used to construct a
sequence of geometric primitives, beginning with the first element. The mode parameter specifies what
kind of primitive to construct and how to use the array elements to construct the primitives.

After glDrawArrays returns, the values of vertex attributes that are modified by glDrawArrays are
undefined. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined
after glDrawArrays returns. Attributes not modified by glDrawArrays remain defined. When
GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated but the attributes
corresponding to enabled arrays are modified.

You can include glDrawArrays in display lists. When you include glDrawArrays in a display list, the
necessary array data, determined by the array pointers and the enables, are generated and entered in the
display list. The values of array pointers and enables are determined during the creation of display lists.

You can read static array data at any time. If any static array elements are modified and the array is not
specified again, the results of any subsequent calls to glDrawArrays are undefined.

Although no error is generated when you specify an array more than once within glBegin and glEnd
pairs, the results are undefined.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE count was negative.
GL_INVALID_ENUM mode was not an accepted value.

GL_INVALID_OPERATION glDrawArrays was called between
a call to glBegin and the
corresponding call to glEnd.

See Also
glArrayElement, glBegin, glColorPointer, glEdgeFlagPointer, glEnd, glGetPointerv, glGetString,
glIndexPointer, glNormalPointer, glTexCoordPointer, glVertexPointer

glDrawBuffer   

[New - Windows 95, OEM Service Release 2]

The glDrawBuffer function specifies which color buffers are to be drawn into.

void glDrawBuffer(
        GLenum mode
     );

Parameters
mode

Specifies up to four color buffers to be drawn into with the following acceptable symbolic constants:
GL_NONE

No color buffers are written.
GL_FRONT_LEFT

Only the front-left color buffer is written.
GL_FRONT_RIGHT

Only the front-right color buffer is written.
GL_BACK_LEFT

Only the back-left color buffer is written.
GL_BACK_RIGHT

Only the back-right color buffer is written.
GL_FRONT

Only the front-left and front-right color buffers are written. If there is no front-right color buffer, only
the front left-color buffer is written.

GL_BACK
Only the back-left and back-right color buffers are written. If there is no back-right color buffer, only
the back-left color buffer is written.

GL_LEFT
Only the front-left and back-left color buffers are written. If there is no back-left color buffer, only the
front-left color buffer is written.

GL_RIGHT
Only the front-right and back-right color buffers are written. If there is no back-right color buffer,
only the front-right color buffer is written.

GL_FRONT_AND_BACK
All the front and back color buffers (front-left, front-right, back-left, back-right) are written. If there
are no back color buffers, only the front-left and front-right color buffers are written. If there are no
right color buffers, only the front-left and back-left color buffers are written. If there are no right or
back color buffers, only the front-left color buffer is written.

GL_AUXi
Only the auxiliary color buffer i is written; i is between 0 and GL_AUX_BUFFERS -1.
(GL_AUX_BUFFERS is not the upper limit; use glGet to query the number of available aux
buffers.)

The default value is GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered
contexts.

Remarks
When colors are written to the frame buffer, they are written into the color buffers specified by
glDrawBuffer.

If more than one color buffer is selected for drawing, then blending or logical operations are computed

and applied independently for each color buffer and can produce different results in each buffer.

Monoscopic contexts include only left buffers, and stereoscopic contexts include both left and right
buffers. Likewise, single-buffered contexts include only front buffers, and double-buffered contexts include
both front and back buffers. The context is selected at OpenGL initialization.

It is always the case that GL_AUXi = GL_AUX0 + i.

The following functions retrieve information related to the glDrawBuffer function:

glGet with argument GL_DRAW_BUFFER
glGet with argument GL_AUX_BUFFERS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION None of the buffers indicated by

mode existed.
GL_INVALID_OPERATION glDrawBuffer was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glBlendFunc, glColorMask, glEnd, glGet, glIndexMask, glLogicOp, glReadBuffer

glDrawElements
[New - Windows 95, OEM Service Release 2]

The glDrawElements function renders primitives from array data.

void glDrawElements(
        GLenum mode,
        GLsizei count,
        GLenum type,
        const GLvoid *indices
     );

Parameters
mode

The kind of primitives to render. It can assume one of the following symbolic values: GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON.

count
The number of elements to be rendered.

type
The type of the values in indices. Must be one of GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT,
or GL_UNSIGNED_INT.

indices
A pointer to the location where the indices are stored.

Remarks
The glDrawElements function enables you to specify multiple geometric primitives with very few function
calls. Instead of calling an OpenGL function to pass each individual vertex, normal, or color, you can
specify separate arrays of vertexes, normals, and colors beforehand and use them to define a sequence
of primitives (all of the same type) with a single call to glDrawElements.

When you call the glDrawElements function, it uses count sequential elements from indices to construct
a sequence of geometric primitives. The mode parameter specifies what kind of primitives are
constructed, and how the array elements are used to construct these primitives. If GL_VERTEX_ARRAY
is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawElements have an unspecified value after glDrawElements
returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after
glDrawElements executes. Attributes that aren't modified remain unchanged.

You can include the glDrawElements function in display lists. When glDrawElements is included in a
display list, the necessary array data (determined by the array pointers and enables) is also entered into
the display list. Because the array pointers and enables are client-side state variables, their values affect
display lists when the lists are created, not when the lists are executed.

Note    The glDrawElements function is only available in OpenGL version 1.1 or later.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.

GL_INVALID_VALUE count was a negative value.
GL_INVALID_OPERATION glDrawElements was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glArrayElement, glBegin, glColorPointer, glDrawArrays, glEdgeFlagPointer, glEnd, glGetPointerv,
glIndexPointer, glNormalPointer, glTexCoordPointer, glVertexPointer

glDrawPixels   

[New - Windows 95, OEM Service Release 2]

The glDrawPixels function writes a block of pixels to the frame buffer.

void glDrawPixels(
        GLsizei width,
        GLsizei height,
        GLenum format,
        GLenum type,
        const GLvoid *pixels
     );

Parameters
width, height

The dimensions of the pixel rectangle that will be written into the frame buffer.
format

The format of the pixel data. Acceptable symbolic constants are:
GL_COLOR_INDEX

Each pixel is a single value, a color index.
1. The glDrawPixels function converts each pixel to fixed-point format, with an unspecified
number of bits to the right of the binary point, regardless of the memory data type. Floating-point
values convert to true fixed-point values. The glDrawPixels function converts signed and unsigned
integer data with all fraction bits set to zero. The function converts bitmap data to either 0.0 or 1.0.
2. The glDrawPixels function shifts each fixed-point index left by GL_INDEX_SHIFT bits
and adds it to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In
either case, zero bits fill otherwise unspecified bit locations in the result.
3. When in RGBA mode, glDrawPixels converts the resulting index to an RGBA pixel using
the GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. When in the color-index mode and GL_MAP_COLOR is true, the
index is replaced with the value that glDrawPixels references in lookup table
GL_PIXEL_MAP_I_TO_I.
4. Whether the lookup replacement of the index is done or not, the integer part of the index
is ANDed with 2b - 1, where b is the number of bits in a color-index buffer.
5. The resulting indexes or RGBA colors are then converted to fragments by attaching the
current raster position z-coordinate and texture coordinates to each pixel, and then assigning x and
y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n/width û
where (x (r) , y (r)) is the current raster position.
6. The glDrawPixels function treats these pixel fragments just like the fragments generated
by rasterizing points, lines, or polygons. It applies texture mapping, fog, and all the fragment
operations before writing the fragments to the frame buffer.

GL_STENCIL_INDEX
Each pixel is a single value, a stencil index.
1. The glDrawPixels function converts it to fixed-point format, with an unspecified number
of bits to the right of the binary point, regardless of the memory data type. Floating-point values
convert to true fixed-point values. The glDrawPixels function converts signed and unsigned
integer data with all fraction bits set to zero. Bitmap data converts to either 0.0 or 1.0.
2. The glDrawPixels function shifts each fixed-point index left by GL_INDEX_SHIFT bits,
and adds it to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In

either case, zero bits fill otherwise unspecified bit locations in the result.
3. If GL_MAP_STENCIL is true, the index is replaced with the value that glDrawPixels
references in lookup table GL_PIXEL_MAP_S_TO_S.
4. Whether the lookup replacement of the index is done or not, the integer part of the index
is then ANDed with 2b - 1, where b is the number of bits in the stencil buffer. The resulting stencil
indexes are then written to the stencil buffer such that the nth index is written to location
x (n) = x (r) + n mod width
y (n) = y (r) + ë n /width û
where (x (r) , y (r)) is the current raster position. Only the pixel ownership test, the scissor test, and
the stencil writemask affect these writes.

GL_DEPTH_COMPONENT
Each pixel is a single-depth component.
1. The glDrawPixels function converts floating-point data directly to an internal floating-
point format with unspecified precision. Signed integer data is mapped linearly to the internal
floating-point format such that the most positive representable integer value maps to 1.0, and the
most negative representable value maps to -1.0. Unsigned integer data is mapped similarly: the
largest integer value maps to 1.0, and zero maps to 0.0.
2. The glDrawPixels function multiplies the resulting floating-point depth value by
GL_DEPTH_SCALE and adds it to GL_DEPTH_BIAS. The result is clamped to the range [0,1].
3. The glDrawPixels function converts the resulting depth components to fragments by
attaching the current raster position color or color index and texture coordinates to each pixel, and
then assigning x and y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n /width û
where (x (r) , y (r)) is the current raster position.
4. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. The glDrawPixels function applies texture mapping, fog, and all the
fragment operations before writing the fragments to the frame buffer.

GL_RGBA
Each pixel is a four-component group in this order: red, green, blue, alpha.
1. The glDrawPixels function converts floating-point values directly to an internal floating-
point format with unspecified precision. Signed integer values are mapped linearly to the internal
floating-point format such that the most positive representable integer value maps to 1.0, and the
most negative representable value maps to - 1.0. Unsigned integer data is mapped similarly: the
largest integer value maps to 1.0, and zero maps to 0.0.
2. The glDrawPixels function multiplies the resulting floating-point color values by
GL_c_SCALE and adds them to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the
respective color components. The results are clamped to the range [0,1].
3. If GL_MAP_COLOR is true, glDrawPixels scales each color component by the size of
lookup table GL_PIXEL_MAP_c_TO_c, and then replaces the component by the value that it
references in that table; c is R, G, B, or A, respectively.
4. The glDrawPixels function converts the resulting RGBA colors to fragments by attaching
the current raster position z-coordinate and texture coordinates to each pixel, then assigning x and
y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n /width û
where (x (r) , y (r)) is the current raster position.
5. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. The glDrawPixels function applies texture mapping, fog, and all the
fragment operations before writing the fragments to the frame buffer.

GL_RED
Each pixel is a single red component.
The glDrawPixels function converts this component to the internal floating-point format in the
same way that the red component of an RGBA pixel is, and then converts it to an RGBA pixel with
green and blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it
had been read as an RGBA pixel.

GL_GREEN
Each pixel is a single green component.
The glDrawPixels function converts this component to the internal floating-point format in the
same way that the green component of an RGBA pixel is, and then converts it to an RGBA pixel
with red and blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if
it had been read as an RGBA pixel.

GL_BLUE
Each pixel is a single blue component.
The glDrawPixels function converts this component to the internal floating-point format in the
same way that the blue component of an RGBA pixel is, and then converts it to an RGBA pixel with
red and green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it
had been read as an RGBA pixel.

GL_ALPHA
Each pixel is a single alpha component.
The glDrawPixels function converts this component to the internal floating-point format in the
same way that the alpha component of an RGBA pixel is, and then converts it to an RGBA pixel
with red, green, and blue set to 0.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_RGB
Each pixel is a group of three components in this order: red, green, blue.
The glDrawPixels function converts each component to the internal floating-point format in the
same way that the red, green, and blue components of an RGBA pixel are. The color triple is
converted to an RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated just as if
it had been read as an RGBA pixel.

GL_LUMINANCE
Each pixel is a single luminance component.
The glDrawPixels function converts this component to the internal floating-point format in the
same way that the red component of an RGBA pixel is, and then converts it to an RGBA pixel with
red, green, and blue set to the converted luminance value, and alpha set to 1.0. After this
conversion, the pixel is treated just as if it had been read as an RGBA pixel.

GL_LUMINANCE_ALPHA
Each pixel is a group of two components in this order: luminance, alpha.
The glDrawPixels function converts the two components to the internal floating-point format in the
same way that the red component of an RGBA pixel is, and then converts them to an RGBA pixel
with red, green, and blue set to the converted luminance value, and alpha set to the converted
alpha value. After this conversion, the pixel is treated just as if it had been read as an RGBA pixel.

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.
GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

type
The data type for pixels. The following symbolic constants are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.
The following table summarizes the meaning of the valid constants for the type parameter.

Type Meaning
GL_UNSIGNED_BYTE Unsigned 8-bit integer
GL_BYTE Signed 8-bit integer
GL_BITMAP Single bits in unsigned 8-bit

integers
GL_UNSIGNED_SHORT Unsigned 16-bit integer
GL_SHORT Signed 16-bit integer
GL_UNSIGNED_INT Unsigned 32-bit integer
GL_INT 32-bit integer
GL_FLOAT Single-precision floating-point

pixels
A pointer to the pixel data.

Remarks
The glDrawPixels function reads pixel data from memory and writes it into the frame buffer relative to the
current raster position. Use glRasterPos to set the current raster position, and use glGet with argument
GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel data in memory and control the processing of the pixel
data before it is placed in the frame buffer. These parameters are set with four functions: glPixelStore,
glPixelTransfer, glPixelMap, and glPixelZoom. This topic describes the effects on glDrawPixels of
many, but not all, of the parameters specified by these four functions.

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned shorts, signed or
unsigned integers, or single-precision floating-point values, depending on type. Each of these bytes,
shorts, integers, or floating-point values is interpreted as one color or depth component, or one index,
depending on format. Indexes are always treated individually. Color components are treated as groups of
one, two, three, or four values, again based on format. Both individual indexes and groups of components
are referred to as pixels. If type is GL_BITMAP, the data must be unsigned bytes, and format must be
either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit pixels,
with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

The width by height pixels are read from memory, starting at location pixels. By default, these pixels are
taken from adjacent memory locations, except that after all width pixels are read, the read pointer is
advanced to the next 4-byte boundary. The glPixelStore function specifies the 4-byte row alignment with
argument GL_UNPACK_ALIGNMENT, and you can set it to 1, 2, 4, or 8 bytes. Other pixel store
parameters specify different read pointer advancements, both before the first pixel is read, and after all
width pixels are read.   

The glPixelStore function operates on each of the width-by-height pixels that it reads from memory in the
same way, based on the values of several parameters specified by glPixelTransfer and glPixelMap. The
details of these operations, as well as the target buffer into which the pixels are drawn, are specific to the
format of the pixels, as specified by format.

The rasterization described thus far assumes pixel zoom factors of 1.0. If you use glPixelZoom to
change the x and y pixel zoom factors, pixels are converted to fragments as follows. If (x (r) , y (r)) is the
current raster position, and a given pixel is in the n column and m row of the pixel rectangle, then
fragments are generated for pixels whose centers are in the rectangle with corners at

(x (r) + zoom (x) n, y (r) + zoom (y) m)
(x (r) + zoom (x) (n + 1), y (r) + zoom (y) (m + 1))

where zoom (x) is the value of GL_ZOOM_X and zoom (y) is the value of GL_ZOOM_Y.

The following functions retrieve information related to glDrawPixels:

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE Either width or height was

negative.
GL_INVALID_ENUM Either format or type was not an

accepted value.
GL_INVALID_OPERATION format was GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_BGR_EXT,
GL_BGRA_EXT,
GL_LUMINANCE, or
GL_LUMINANCE_ALPHA, and
OpenGL was in color-index mode.

GL_INVALID_ENUM type was GL_BITMAP and format
was not either GL_COLOR_INDEX
or GL_STENCIL_INDEX.

GL_INVALID_OPERATION format was GL_STENCIL_INDEX
and there was no stencil buffer.

GL_INVALID_OPERATION glDrawPixels was called between
a call to glBegin and the
corresponding call to glEnd.

See Also
glAlphaFunc, glBegin, glBlendFunc, glCopyPixels, glDepthFunc, glEnd, glGet, glLogicOp,
glPixelMap, glPixelStore, glPixelTransfer, glPixelZoom, glRasterPos, glReadPixels, glScissor,
glStencilFunc

glEdgeFlag, glEdgeFlagv
[New - Windows 95, OEM Service Release 2]

The glEdgeFlag and glEdgeFlagv functions flag edges as either boundary or nonboundary.

void glEdgeFlag(
        GLboolean flag
     );

Parameters
flag

In glEdgeFlag, specifies the current edge flag value, either TRUE or FALSE.

void glEdgeFlagv(
        const GLboolean * flag
     );

Parameters
flag

In glEdgeFlagv, specifies a pointer to an array that contains a single Boolean element, which
replaces the current edge flag value.

Remarks
Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a glBegin/glEnd
pair is marked as the start of either a boundary or nonboundary edge. If the current edge flag is TRUE
when the vertex is specified, the vertex is marked as the start of a boundary edge. If the current edge flag
is FALSE, the vertex is marked as the start of a nonboundary edge. The glEdgeFlag function sets the
edge flag to TRUE if flag is nonzero, FALSE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as boundary,
regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set to
GL_POINT or GL_LINE. See glPolygonMode.

Initially, the edge flag bit is TRUE.

The current edge flag can be updated at any time. In particular, glEdgeFlag can be called between a call
to glBegin and the corresponding call to glEnd.

The following function retrieves information related to the glEdgeFlag function:

glGet with argument GL_EDGE_FLAG

See Also
glBegin, glEnd, glGet, glPolygonMode

glEdgeFlagPointer
[New - Windows 95, OEM Service Release 2]

The glEdgeFlagPointer function defines an array of edge flags.

void glEdgeFlagPointer(
        GLsizei stride,
        GLsizei count,
        const GLboolean * pointer
     );

Parameters
stride

The byte offset between consecutive edge flags. When stride is zero, the edge flags are tightly
packed in the array.

count
The number of edge flags, counting from the first, that are static.

pointer
A pointer to the first edge flag in the array.

Remarks
The glEdgeFlagPointer function specifies the location and data of an array of Boolean edge flags to use
when rendering. The stride parameter determines the byte offset from one edge flag to the next, which
enables the packing of vertices and attributes in a single array or storage in separate arrays. In some
implementations, storing the vertices and attributes in a single array can be more efficient than using
separate arrays.

Starting from the first edge-flag array element, count indicates the total number of static elements. Your
application can modify static elements, but once the elements are modified, the application must explicitly
specify the array again before using it for any rendering. Nonstatic array elements are not accessed until
you call glDrawArrays or glArrayElement.

Static array data can be read at any time. If any static array elements are modified and the array is not
specified again, the results of any subsequent calls to glEdgeFlagPointer are undefined.

An edge-flag array is enabled when you specify the GL_EDGE_FLAG_ARRAY constant with
glEnableClientState. When enabled, glDrawArrays or glArrayElement uses the edge-flag array. By
default the edge-flag array is disabled.

You cannot include glEdgeFlagPointer in display lists.

When you specify an edge-flag array using glEdgeFlagPointer, the values of all the function's edge-flag
array parameters are saved in a client-side state and static array elements can be cached. Because the
edge-flag array parameters are in a client-side state, glPushAttrib and glPopAttrib do not save or
restore their values.

Although calling glEdgeFlagPointer within a glBegin/glEnd pair does not generate an error, the results
are undefined.

The following functions retrieve information related to the glEdgeFlagPointer function:

glIsEnabled with argument GL_EDGE_FLAG_ARRAY
glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE
glGet with argument GL_EDGE_FLAG_ARRAY_COUNT

glGetPointerv with argument GL_EDGE_FLAG_ARRAY_POINTER

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM stride or count was negative.

See Also
glArrayElement, glBegin, glColorPointer, glDrawArrays, glEnableClientState, glEnd, glGet,
glGetPointerv, glGetString, glIndexPointer, glIsEnabled, glNormalPointer, glPopAttrib,
glPushAttrib, glTexCoordPointer, glVertexPointer

glEnable, glDisable
[New - Windows 95, OEM Service Release 2]

The glEnable and glDisable functions enable or disable OpenGL capabilities.

void glEnable(
        GLenum cap
     );

void glDisable(
        GLenum cap
     );

Parameters
cap

A symbolic constant indicating an OpenGL capability.
For discussion of the values cap can take, see the following Remarks section.

Remarks
The glEnable and glDisable functions enable and disable various capabilities. Use glIsEnabled or glGet
to determine the current setting of any capability.

Both glEnable and glDisable take a single argument, cap, which can assume one of the following
values:

GL_ALPHA_TEST
If enabled, do alpha testing. See glAlphaFunc.

GL_AUTO_NORMAL
If enabled, compute surface normal vectors analytically when either GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 has generated vertices. See glMap2.

GL_BLEND
If enabled, blend the incoming RGBA color values with the values in the color buffers. See
glBlendFunc.

GL_CLIP_PLANEi
If enabled, clip geometry against user-defined clipping plane i. See glClipPlane.

GL_COLOR_MATERIAL
If enabled, have one or more material parameters track the current color. See glColorMaterial.

GL_CULL_FACE
If enabled, cull polygons based on their winding in window coordinates. See glCullFace.

GL_DEPTH_TEST
If enabled, do depth comparisons and update the depth buffer. See glDepthFunc and
glDepthRange.

GL_DITHER
If enabled, dither color components or indexes before they are written to the color buffer.

GL_FOG
If enabled, blend a fog color into the post-texturing color. See glFog.

GL_LIGHTi
If enabled, include light i in the evaluation of the lighting equation. See glLightModel and glLight.

GL_LIGHTING
If enabled, use the current lighting parameters to compute the vertex color or index. If disabled,
associate the current color or index with each vertex. See glMaterial, glLightModel, and glLight.

GL_LINE_SMOOTH

If enabled, draw lines with correct filtering. If disabled, draw aliased lines. See glLineWidth.
GL_LINE_STIPPLE

If enabled, use the current line stipple pattern when drawing lines. See glLineStipple.
GL_LOGIC_OP

If enabled, apply the currently selected logical operation to the incoming and color-buffer indexes.
See glLogicOp.

GL_MAP1_COLOR_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate RGBA values. See also
glMap1.

GL_MAP1_INDEX
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate color indexes. See also
glMap1.

GL_MAP1_NORMAL
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate normals. See also
glMap1.

GL_MAP1_TEXTURE_COORD_1
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s texture coordinates.
See also glMap1.

GL_MAP1_TEXTURE_COORD_2
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s and t texture
coordinates. See also glMap1.

GL_MAP1_TEXTURE_COORD_3
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, and r texture
coordinates. See also glMap1.

GL_MAP1_TEXTURE_COORD_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate s, t, r, and q texture
coordinates. See also glMap1.

GL_MAP1_VERTEX_3
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate x, y, and z vertex
coordinates. See also glMap1.

GL_MAP1_VERTEX_4
If enabled, calls to glEvalCoord1, glEvalMesh1, and glEvalPoint1 generate homogeneous x, y, z,
and w vertex coordinates. See also glMap1.

GL_MAP2_COLOR_4
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate RGBA values. See also
glMap2.

GL_MAP2_INDEX
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate color indexes. See also
glMap2.

GL_MAP2_NORMAL
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate normals. See also
glMap2.

GL_MAP2_TEXTURE_COORD_1
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s texture coordinates.
See also glMap2.

GL_MAP2_TEXTURE_COORD_2
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s and t texture
coordinates. See also glMap2.

GL_MAP2_TEXTURE_COORD_3
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, and r texture
coordinates. See also glMap2.

GL_MAP2_TEXTURE_COORD_4

If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate s, t, r, and q texture
coordinates. See also glMap2.

GL_MAP2_VERTEX_3
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate x, y, and z vertex
coordinates. See also glMap2.

GL_MAP2_VERTEX_4
If enabled, calls to glEvalCoord2, glEvalMesh2, and glEvalPoint2 generate homogeneous x, y, z,
and w vertex coordinates. See also glMap2.

GL_NORMALIZE
If enabled, normal vectors specified with glNormal are scaled to unit length after transformation. See
glNormal.

GL_POINT_SMOOTH
If enabled, draw points with proper filtering. If disabled, draw aliased points. See glPointSize.

GL_POLYGON_SMOOTH
If enabled, draw polygons with proper filtering. If disabled, draw aliased polygons. See
glPolygonMode.

GL_POLYGON_STIPPLE
If enabled, use the current polygon stipple pattern when rendering polygons. See glPolygonStipple.

GL_SCISSOR_TEST
If enabled, discard fragments that are outside the scissor rectangle. See glScissor.

GL_STENCIL_TEST
If enabled, do stencil testing and update the stencil buffer. See glStencilFunc and glStencilOp.

GL_TEXTURE_1D
If enabled, one-dimensional texturing is performed (unless two-dimensional texturing is also enabled).
See glTexImage1D.

GL_TEXTURE_2D
If enabled, two-dimensional texturing is performed. See glTexImage2D.

GL_TEXTURE_GEN_Q
If enabled, the q texture coordinate is computed using the texture-generation function defined with
glTexGen. Otherwise, the current q texture coordinate is used.   

GL_TEXTURE_GEN_R
If enabled, the r texture coordinate is computed using the texture generation function defined with
glTexGen. If disabled, the current r texture coordinate is used.   

GL_TEXTURE_GEN_S
If enabled, the s texture coordinate is computed using the texture generation function defined with
glTexGen. If disabled, the current s texture coordinate is used.   

GL_TEXTURE_GEN_T
If enabled, the t texture coordinate is computed using the texture generation function defined with
glTexGen. If disabled, the current t texture coordinate is used.   

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM cap was not one of the values

listed in the preceding Remarks
section.

GL_INVALID_OPERATION glEnable was called between a
call to glBegin and the
corresponding call to glEnd.

See Also
glAlphaFunc, glArrayElement, glBegin, glBlendFunc, glClipPlane, glColorMaterial, glColorPointer,
glCullFace, glDepthFunc, glDepthRange, glDrawArrays, glEdgeFlagPointer, glEnd, glEvalCoord1,
glEvalMesh1, glEvalPoint1, glFog, glGet, glIndexPointer, glIsEnabled, glLight, glLightModel,
glLineWidth, glLineStipple, glLogicOp, glMap1, glMap2, glMaterial, glNormal, glNormalPointer,
glPointSize, glPolygonMode, glPolygonStipple, glScissor, glStencilFunc, glStencilOp,
glTexCoordPointer, glTexGen, glTexImage1D, glTexImage2D

glEnableClientState,
glDisableClientState

[New - Windows 95, OEM Service Release 2]

The glEnableClientState and glDisableClientState functions enable and disable arrays respectively.

void glEnableClientState(
        GLenum array
     );

void glDisableClientState(
        GLenum array
     );

Parameters
array

A symbolic constant for the array you want to enable or disable. This parameter can assume one of
the following values:

GL_COLOR_ARRAY
If enabled, use color arrays with calls to glArrayElement, glDrawElements, or glDrawArrays. See
also glColorPointer.

GL_EDGE_FLAG_ARRAY
If enabled, use edge flag arrays with calls to glArrayElement, glDrawElements, or glDrawArrays.
See also glEdgeFlagPointer.

GL_INDEX_ARRAY
If enabled, use index arrays with calls to glArrayElement, glDrawElements, or glDrawArrays. See
also glIndexPointer.

GL_NORMAL_ARRAY
If enabled, use normal arrays with calls to glArrayElement, glDrawElements, or glDrawArrays. See
also glNormalPointer.

GL_TEXTURE_COORD_ARRAY
If enabled, use texture coordinate arrays with calls to glArrayElement, glDrawElements, or
glDrawArrays. See also glTexCoordPointer.

GL_VERTEX_ARRAY
If enabled, use vertex arrays with calls to glArrayElement, glDrawElements, or glDrawArrays. See
also glVertexPointer.

Remarks
The glEnableClientState and glDisableClientState functions enable and disable various individual
arrays. Use glIsEnabled or glGet to determine the current setting of any capability.

Calling glEnableClientState and glDisableClientState between calls to glBegin and the corresponding
call to glEnd can cause an error. If no error is generated, the behavior is undefined.

Note    The glEnableClientState and glDisableClientState functions are only available in OpenGL
version 1.1 or later.

Error Codes
The following is the error code generated and its condition.

Error Code Condition
GL_INVALID_ENUM array was not an accepted value.

See Also
glArrayElement, glBegin, glColorPointer, glDrawArrays, glDrawElements, glEdgeFlagPointer,
glEnable, glEnd, glGetPointerv, glIndexPointer, glInterleavedArrays, glNormalPointer,
glTexCoordPointer, glVertexPointer

      glEvalCoord
[New - Windows 95, OEM Service Release 2]

glEvalCoord1d, glEvalCoord1f, glEvalCoord2d, glEvalCoord2f, glEvalCoord1dv, glEvalCoord1fv,
glEvalCoord2dv, glEvalCoord2fv

These functions evaluate enabled one- and two-dimensional maps.

void glEvalCoord1d(
        GLdouble u
     );

void glEvalCoord1f(
        GLfloat u
     );

void glEvalCoord2d(
        GLdouble u,
        GLdouble v
     );

void glEvalCoord2f(
        GLfloat u,
        GLfloat v
     );

Parameters
u

In glEvalCoord1d, glEvalCoord1f, glEvalCoord2d, and glEvalCoord2f, specifies a value that is the
domain coordinate u to the basis function defined in a previous glMap1 or glMap2 function.

v
A value that is the domain coordinate v to the basis function defined in a previous glMap2 function.
This argument is not present in a glEvalCoord1 function.

void glEvalCoord1dv(
        const GLdouble * u
     );

void glEvalCoord1fv(
        const GLfloat * u
     );

void glEvalCoord2dv(
        const GLdouble * u
     );

void glEvalCoord2fv(
        const GLfloat * u
     );

Parameters
u

In glEvalCoord1dv, glEvalCoord1fv, glEvalCoord2dv, and glEvalCoord2fv, specifies a pointer to
an array containing either one or two domain coordinates. The first coordinate is u. The second
coordinate is v, which is present only in glEvalCoord2 versions.

Remarks
The glEvalCoord1 function evaluates enabled one-dimensional maps at argument u. The glEvalCoord2
function does the same for two-dimensional maps using two domain values, u and v. Maps are defined
with glMap1 and glMap2, and are enabled and disabled with glEnable and glDisable.

When one of the glEvalCoord functions is issued, all currently enabled maps of the indicated dimension
are evaluated. Then, for each enabled map, it is as if the corresponding OpenGL function were issued
with the computed value. That is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glIndex
function is simulated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor function is
simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector is produced, and if
any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_COORD_4 is enabled, then an
appropriate glTexCoord function is simulated.

OpenGL uses evaluated values instead of current values for those evaluations that are enabled, and
current values otherwise, for color, color index, normal, and texture coordinates. However, the evaluated
values do not update the current values. Thus, if glVertex functions are interspersed with glEvalCoord
functions, the color, normal, and texture coordinates associated with the glVertex functions are not
affected by the values generated by the glEvalCoord functions, but only by the most recent glColor,
glIndex, glNormal, and glTexCoord functions.

No functions are issued for maps that are not enabled. If more than one texture evaluation is enabled for
a particular dimension (for example, GL_MAP2_TEXTURE_COORD_1 and
GL_MAP2_TEXTURE_COORD_2), then only the evaluation of the map that produces the larger number
of coordinates (in this case, GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4
overrides GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3, in the
same manner. If neither a three- nor four-component vertex map is enabled for the specified dimension,
glEvalCoord is ignored.

If automatic normal generation is enabled, glEvalCoord2 calls glEnable with argument
GL_AUTO_NORMAL to generate surface normals analytically, regardless of the contents or enabling of
the GL_MAP2_NORMAL map. Let

{ewc msdncd, EWGraphic, bsd23543 0 /a "SDK.BMP"}

The generated normal n is

{ewc msdncd, EWGraphic, bsd23543 1 /a "SDK.BMP"}

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_NORMAL, if
enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is
enabled, no normal is generated for glEvalCoord2 functions.

The following functions retrieve information related to the glEvalCoord functions:

glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4
glIsEnabled with argument GL_AUTO_NORMAL
glGetMap

See Also
glBegin, glColor, glDisable, glEnable, glEvalMesh, glEvalPoint, glGetMap, glIndex, glIsEnabled,
glMap1, glMap2, glMapGrid, glNormal, glTexCoord, glVertex

glEvalMesh1, glEvalMesh2
[New - Windows 95, OEM Service Release 2]

The glEvalMesh1 and glEvalMesh2 functions compute a one- or two-dimensional grid of points or lines.

void glEvalMesh1(
        GLenum mode,
        GLint i1,
        GLint i2
     );

Parameters
mode

In glEvalMesh1, specifies whether to compute a one-dimensional mesh of points or lines. The
following symbolic constants are accepted: GL_POINT and GL_LINE.

i1, i2
The first and last integer values for grid domain variable i.

void glEvalMesh2(
        GLenum mode,
        GLint i1,
        GLint i2,
        GLint j1,
        GLint j2
     );

Parameters
mode

In glEvalMesh2, specifies whether to compute a two-dimensional mesh of points, lines, or polygons.
The following symbolic constants are accepted: GL_POINT, GL_LINE, and GL_FILL.

i1, i2
The first and last integer values for grid domain variable i.

j1, j2
The first and last integer values for grid domain variable j.

Remarks
Use glMapGrid and glEvalMesh in tandem to efficiently generate and evaluate a series of evenly spaced
map domain values. The glEvalMesh function steps through the integer domain of a one- or two-
dimensional grid, whose range is the domain of the evaluation maps specified by glMap1 and glMap2.
The mode parameter determines whether the resulting vertices are connected as points, lines, or filled
polygons.

In the one-dimensional case, glEvalMesh1, the mesh is generated as if the following code fragment were
executed:

glBegin(type) ;
for (i = i1; i <= i2; i += 1)
        glEvalCoord1(i·Du + u (1))
glEnd();

where

Du = (u (2) - u (1)) / n

and n, u (1) , and u (2) are the arguments to the most recent glMapGrid1 function. The type parameter is
GL_POINTS if mode is GL_POINT, or GL_LINES if mode is GL_LINE. The one absolute numeric
requirement is that if i = n, then the value computed from i·D u + u (1) is exactly u (2) .

In the two-dimensional case, glEvalMesh2, let

D u = (u (2) - u (1))/n
D v = (v (2) - v (1))/m,

where n, u (1) , u (2) , m, v (1) , and v (2) are the arguments to the most recent glMapGrid2 function. Then, if
mode is GL_FILL, glEvalMesh2 is equivalent to:

for (j = j1; j < j2; j += 1) {
        glBegin(GL_QUAD_STRIP);
        for (i = i1; i <= i2; i += 1) {
                glEvalCoord2(i·D u + u (1) , j ·D v + v (1));
                glEvalCoord2(i·D u + u (1) , (j+1) ·D v + v (1));
        }
        glEnd();
}

If mode is GL_LINE, then a call to glEvalMesh2 is equivalent to:

for (j = j1; j <= j2; j += 1) {
        glBegin(GL_LINE_STRIP);
        for (i = i1; i <= i2; i += 1)
                glEvalCoord2(i·D u + u (1) , j·D v + v (1));
        glEnd();
}
        for (i = i1; i <= i2; i += 1) {
        glBegin(GL_LINE_STRIP);
        for (j = j1; j <= j1; j += 1)
                glEvalCoord2(i·D u + u (1) , j·D v + v (1));
        glEnd();
}

And finally, if mode is GL_POINT, then a call to glEvalMesh2 is equivalent to:

glBegin(GL_POINTS);
for (j = j1; j <= j2; j += 1) {
        for (i = i1; i <= i2; i += 1) {
                glEvalCoord2(i·D u + u (1) , j·D v + v (1));
        }
}
glEnd();

In all three cases, the only absolute numeric requirements are that if i = n, then the value computed from
i·D u + u (1) is exactly u (2) , and if j = m, then the value computed from j·D v + v (1) is exactly v (2) .

The following functions retrieve information relating to glEvalMesh:

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION glEvalMesh was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glEvalCoord, glEvalPoint, glMap1, glMap2, glMapGrid

glEvalPoint1, glEvalPoint2
[New - Windows 95, OEM Service Release 2]

The glEvalPoint1 and glEvalPoint2 functions generate and evaluate a single point in a mesh.

void glEvalPoint1(
        GLint i
     );

void glEvalPoint2(
        GLint i,
        GLint j
     );

Parameters
i

The integer value for grid domain variable i.
j

The integer value for grid domain variable j (glEvalPoint2 only).

Remarks
The glMapGrid and glEvalMesh functions are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. You can use glEvalPoint to evaluate a single grid point in
the same gridspace that is traversed by glEvalMesh. Calling glEvalPoint1 is equivalent to calling

glEvalCoord1(i·Du + u (1));

where

Du = (u (2) - u (1)) / n

and n, u (1) , and u (2) are the arguments to the most recent glMapGrid1 function. The one absolute
numeric requirement is that if i = n, then the value computed from i·D u + u (1) is exactly u (2) .

In the two-dimensional case, glEvalPoint2, let

Du = (u (2) - u (1))/n
Dv = (v (2) - v (1))/m

where n, u (1) , u (2) , m, v (1) , and v (2) are the arguments to the most recent glMapGrid2 function. Then
the glEvalPoint2 function is equivalent to calling

glEvalCoord2(i·Du + u (1) , j·Dv + v (1));

The only absolute numeric requirements are that if i = n, then the value computed from i·Du + u (1) is
exactly u (2) , and if j = m, then the value computed from j·Dv + v (1) is exactly v (2) .

The following functions retrieve information relating to glEvalPoint1 and glEvalPoint2:

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

See Also
glEvalCoord, glEvalMesh, glGet, glMap1, glMap2, glMapGrid

glFeedbackBuffer   

[New - Windows 95, OEM Service Release 2]

The glFeedbackBuffer function controls feedback mode.

void glFeedbackBuffer(
        GLsizei size,
        GLenum type,
        GLfloat * buffer
     );

Parameters
size

The maximum number of values that can be written into buffer.
type

A symbolic constant that describes the information that will be returned for each vertex. The following
symbolic constants are accepted: GL_2D, GL_3D, GL_3D_COLOR, GL_3D_COLOR_TEXTURE,
and GL_4D_COLOR_TEXTURE.

buffer
Returns the feedback data.

Remarks
The glFeedbackBuffer function controls feedback. Feedback, like selection, is an OpenGL mode. The
mode is selected by calling glRenderMode with GL_FEEDBACK. When OpenGL is in feedback mode,
no pixels are produced by rasterization. Instead, information about primitives that would have been
rasterized is fed back to the application using OpenGL.

The glFeedbackBuffer function has three arguments:

· buffer is a pointer to an array of floating-point values into which feedback information is placed.
· size indicates the size of the array.
· type is a symbolic constant describing the information that is fed back for each vertex.

You must issue glFeedbackBuffer before feedback mode is enabled (by calling glRenderMode with
argument GL_FEEDBACK). Setting GL_FEEDBACK without establishing the feedback buffer, or calling
glFeedbackBuffer while OpenGL is in feedback mode, is an error.

Take OpenGL out of feedback mode by calling glRenderMode with a parameter value other than
GL_FEEDBACK. When you do this while OpenGL is in feedback mode, glRenderMode returns the
number of entries placed in the feedback array. The returned value never exceeds size. If the feedback
data required more room than was available in buffer, glRenderMode returns a negative value.

While in feedback mode, each primitive that would be rasterized generates a block of values that get
copied into the feedback array. If doing so would cause the number of entries to exceed the maximum,
the block is partially written so as to fill the array (if there is any room left at all), and an overflow flag is
set. Each block begins with a code indicating the primitive type, followed by values that describe the
primitive's vertices and associated data. Entries are also written for bitmaps and pixel rectangles.
Feedback occurs after polygon culling and glPolygonMode interpretation of polygons has taken place,
so polygons that are culled are not returned in the feedback buffer. It can also occur after polygons with
more than three edges are broken up into triangles, if the OpenGL implementation renders polygons by
performing this decomposition.

You can insert a marker into the feedback buffer with glPassThrough.   

The following is the grammar for the blocks of values written into the feedback buffer. Each primitive is
indicated with a unique identifying value followed by some number of vertices. Polygon entries include an
integer value indicating how many vertices follow. A vertex is fed back as some number of floating-point
values, as determined by type. Colors are fed back as four values in RGBA mode and one value in color-
index mode.

feedbackList ¬ feedbackItem feedbackList | feedbackItem
feedbackItem ¬ point | lineSegment | polygon | bitmap | pixelRectangle | passThru
point ¬ GL_POINT_TOKEN vertex
lineSegment ¬ GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex
polygon ¬ GL_POLYGON_TOKEN n polySpec
polySpec ¬ polySpec vertex | vertex vertex vertex
bitmap ¬ GL_BITMAP_TOKEN vertex
pixelRectangle ¬ GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex
passThru ¬ GL_PASS_THROUGH_TOKEN value
vertex ¬ 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture
2d ¬ value value
3d ¬ value value value
3dColor ¬ value value value color
3dColorTexture ¬ value value value color tex
4dColorTexture ¬ value value value value color tex
color ¬ rgba | index
rgba ¬ value value value value
index ¬ value
tex ¬ value value value value

The value parameter is a floating-point number, and n is a floating-point integer giving the number of
vertices in the polygon. The following are symbolic floating-point constants: GL_POINT_TOKEN,
GL_LINE_TOKEN, GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN, GL_BITMAP_TOKEN,
GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN, and GL_PASS_THROUGH_TOKEN.
GL_LINE_RESET_TOKEN is returned whenever the line stipple pattern is reset. The data returned as a
vertex depends on the feedback type.

The following table gives the correspondence between type and the number of values per vertex; k is 1 in
color-index mode and 4 in RGBA mode.

Type Coordinates Color Texture

Total Number
of Values

GL_2D x, y 2
GL_3D x, y, z 3
GL_3D_COLOR x, y, z k 3 + k
GL_3D_COLOR_TEXTURE x, y, z, k 4 7 + k
GL_4D_COLOR_TEXTURE x, y, z, w k 4 8 + k

Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates. Feedback
colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if texture coordinate
generation is enabled. They are always transformed by the texture matrix.

The glFeedbackBuffer function, when used in a display list, is not compiled into the display list but rather

is executed immediately.

The following function retrieves information related to glFeedbackBuffer:

glGet with argument GL_RENDER_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE size was negative.
GL_INVALID_OPERATION glFeedbackBuffer was called while

the render mode was
GL_FEEDBACK, or glRenderMode
was called with argument
GL_FEEDBACK before
glFeedbackBuffer was called at least
once.

GL_INVALID_OPERATION glFeedbackBuffer was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glGet, glLineStipple, glPassThrough, glPolygonMode, glRenderMode,
glSelectBuffer

glFinish   

[New - Windows 95, OEM Service Release 2]

The glFinish function blocks until all OpenGL execution is complete.

void glFinish(
        void
     );

Remarks
The glFinish function does not return until the effects of all previously called OpenGL functions are
complete. Such effects include all changes to the OpenGL state, all changes to the connection state, and
all changes to the frame buffer contents.

The glFinish function requires a round trip to the server.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glFinish was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glFlush

glFlush   

[New - Windows 95, OEM Service Release 2]

The glFlush function forces execution of OpenGL functions in finite time.

void glFlush(
        void
     );

Remarks
Different OpenGL implementations buffer commands in several different locations, including network
buffers and the graphics accelerator itself. The glFlush function empties all these buffers, causing all
issued commands to be executed as quickly as they are accepted by the actual rendering engine. Though
this execution may not be completed in any particular time period, it does complete in finite time.

Because any OpenGL program might be executed over a network, or on an accelerator that buffers
commands, be sure to call glFlush in all programs whenever they require that all of their previously
issued commands have been completed. For example, call glFlush before waiting for user input that
depends on the generated image.

The glFlush function can return at any time. It does not wait until the execution of all previously issued
OpenGL functions is complete.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glFlush was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glFinish

glFogf, glFogi, glFogfv, glFogiv
[New - Windows 95, OEM Service Release 2]

These functions specify fog parameters.

void glFogf(
        GLenum pname,
        GLfloat param
     );

void glFogi(
        GLenum pname,
        GLint param
     );

void glFogfv(
        GLenum pname,
        const GLfloat * params
     );

void glFogiv(
        GLenum pname,
        const GLint * params
     );

Parameters
pname

In glFogf and glFogi, specifies a single-valued fog parameter.
In glFogfv and glFogiv, specifies a fog parameter.
The glFogf, glFogi, glFogfv, and glFogiv functions accept the following values:
GL_FOG_MODE

The params parameter is a single integer or floating-point value that specifies the equation to be
used to compute the fog blend factor, f. Three symbolic constants are accepted: GL_LINEAR,
GL_EXP, and GL_EXP2. The equations corresponding to these symbolic constants are defined in
the following Remarks section. The default fog mode is GL_EXP.

GL_FOG_DENSITY
The params parameter is a single integer or floating-point value that specifies density, the fog
density used in both exponential fog equations. Only nonnegative densities are accepted. The
default fog density is 1.0.

GL_FOG_START
The params parameter is a single integer or floating-point value that specifies start, the near
distance used in the linear fog equation. The default near distance is 0.0.

GL_FOG_END
The params parameter is a single integer or floating-point value that specifies end, the far distance
used in the linear fog equation. The default far distance is 1.0.

GL_FOG_INDEX
The params parameter is a single integer or floating-point value that specifies i (f) , the fog color
index. The default fog index is 0.0.

The glFogfv and glFogiv functions also accept GL_FOG_COLOR:
GL_FOG_COLOR

The params parameter contains four integer or floating-point values that specify C (f) , the fog color.
Integer values are mapped linearly such that the most positive representable value maps to 1.0,
and the most negative representable value maps to -1.0. Floating-point values are mapped directly.

After conversion, all color components are clamped to the range [0,1]. The default fog color is
(0,0,0,0).

param
In glFogf and glFogi, specifies the value that pname will be set to.

params
In glFogfv and glFogiv, specifies the value or values to be assigned to pname. GL_FOG_COLOR
requires an array of four values. All other parameters accept an array containing only a single value.

Remarks
You enable and disable fog with glEnable and glDisable, using the argument GL_FOG. While enabled,
fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer-clear operations.

The glFog function assigns the value or values in params to the fog parameter specified by pname.

Fog blends a fog color with each rasterized pixel fragment's posttexturing color using a blending factor f.
Factor f is computed in one of three ways, depending on the fog mode. Let z be the distance in eye
coordinates from the origin to the fragment being fogged. The equation for GL_LINEAR fog is:

{ewc msdncd, EWGraphic, bsd23544 0 /a "SDK.BMP"}

The equation for GL_EXP fog is:

{ewc msdncd, EWGraphic, bsd23544 1 /a "SDK.BMP"}

The equation for GL_EXP2 fog is:

{ewc msdncd, EWGraphic, bsd23544 2 /a "SDK.BMP"}

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if OpenGL is in
RGBA color mode, the fragment's color C (r) is replaced by

{ewc msdncd, EWGraphic, bsd23544 3 /a "SDK.BMP"}

In color-index mode, the fragment's color index i (r) is replaced by

{ewc msdncd, EWGraphic, bsd23544 4 /a "SDK.BMP"}

The following functions retrieve information related to the glFog functions:

glGet with argument GL_FOG_COLOR
glGet with argument GL_FOG_INDEX
glGet with argument GL_FOG_DENSITY
glGet with argument GL_FOG_START
glGet with argument GL_FOG_END
glGet with argument GL_FOG_MODE
glIsEnabled with argument GL_FOG

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.
GL_INVALID_OPERATION glFinish was called between a call to

glBegin and the corresponding call to

glEnd.

See Also
glBegin, glDisable, glEnable, glEnd, glGet, glIsEnabled

glFrontFace   

[New - Windows 95, OEM Service Release 2]

The glFrontFace function defines front- and back-facing polygons.

void glFrontFace(
        GLenum mode
     );

Parameters
mode

The orientation of front-facing polygons. GL_CW and GL_CCW are accepted. The default value is
GL_CCW.

Remarks
In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible.
Eliminating these invisible polygons has the obvious benefit of speeding up the rendering of the image.
You enable and disable elimination of back-facing polygons with glEnable and glDisable using argument
GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginary
object following the path from its first vertex, its second vertex, and so on, to its last vertex, and finally
back to its first vertex, moves in a clockwise direction about the interior of the polygon. The polygon's
winding is said to be counterclockwise if the imaginary object following the same path moves in a
counterclockwise direction about the interior of the polygon. The glFrontFace function specifies whether
polygons with clockwise winding in window coordinates, or counterclockwise winding in window
coordinates, are taken to be front-facing. Passing GL_CCW to mode selects counterclockwise polygons
as front-facing; GL_CW selects clockwise polygons as front-facing. By default, counterclockwise polygons
are taken to be front-facing.

The following function retrieves information about glFrontface:

glGet with argument GL_FRONT_FACE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION glFrontFace was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glCullFace, glDisable, glEnable, glEnd, glGet, glLightModel

glFrustum   

[New - Windows 95, OEM Service Release 2]

The glFrustum function multiplies the current matrix by a perspective matrix.

void glFrustum(
        GLdouble left,
        GLdouble right,
        GLdouble bottom,
        GLdouble top,
        GLdouble znear,
        GLdouble zfar
     );

Parameters
left, right

The coordinates for the left and right vertical clipping planes.
bottom, top

The coordinates for the bottom and top horizontal clipping planes.
znear, zfar

The distances to the near and far depth clipping planes. Both distances must be positive.

Remarks
The glFrustum function describes a perspective matrix that produces a perspective projection. The (left,
bottom, znear) and (right, top, znear) parameters specify the points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the window, respectively, assuming that the eye is
located at (0, 0, 0). The zfar parameter specifies the location of the far clipping plane. Both znear and zfar
must be positive. The corresponding matrix is:

{ewc msdncd, EWGraphic, bsd23544 5 /a "SDK.BMP"}

{ewc msdncd, EWGraphic, bsd23544 6 /a "SDK.BMP"}

The glFrustum function multiplies the current matrix by this matrix, with the result replacing the current
matrix. That is, if M is the current matrix and F is the frustum perspective matrix, then glFrustum replaces
M with M · F.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Depth-buffer precision is affected by the values specified for znear and zfar. The greater the ratio of zfar
to znear is, the less effective the depth buffer will be at distinguishing between surfaces that are near
each other. If

{ewc msdncd, EWGraphic, bsd23544 7 /a "SDK.BMP"}

roughly log (2) r bits of depth buffer precision are lost. Because r approaches infinity as znear approaches
zero, you should never set znear to zero.

The following functions retrieve information about glFrustum:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE znear or zfar was not positive.
GL_INVALID_OPERATION glFrustum was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glGet, glMatrixMode, glMultMatrix, glOrtho, glPopMatrix, glPushMatrix, glViewport

glGenLists   

[New - Windows 95, OEM Service Release 2]

The glGenLists function generates a contiguous set of empty display lists.

GLuint glGenLists(
        GLsizei range
     );

Parameters
range

The number of contiguous empty display lists to be generated.

Remarks
The glGenLists function has one argument, range. It returns an integer n such that range contiguous
empty display lists, named n, n+1, . . ., n+range - 1, are created. If range is zero, if there is no group of
range contiguous names available, or if any error is generated, then no display lists are generated and
zero is returned.

The following function retrieves information related to glGenLists:

glIsList

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE range is negative.
GL_INVALID_OPERATION glGenLists was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glCallList, glCallLists, glDeleteLists, glEnd, glIsList, glNewList

glGenTextures
[New - Windows 95, OEM Service Release 2]

The glGenTextures function generates texture names.

void glGenTextures(
        GLsizei n,
        GLuint * textures
     );

Parameters
n

The number of texture names to be generated.
textures

A pointer to the first element of an array in which the generated texture names are stored.

Remarks
The glGenTextures function returns n texture names in the textures parameter. The texture names are
not necessarily a contiguous set of integers, however, none of the returned names can have been in use
immediately prior to calling the glGenTextures function. The generated textures assume the
dimensionality of the texture target to which they are first bound with the glBindTexture function. Texture
names returned by glGenTextures are not returned by subsequent calls to glGenTextures unless they
are first deleted by calling glDeleteTextures.

You cannot include glGenTextures in display lists.

Note    The glGenTextures function is only available in OpenGL version 1.1 or later.

The following function retrieves information related to glGenTextures:

glIsTexture

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE n was a negative value.
GL_INVALID_OPERATION glGenTextures was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glBindTexture, glDeleteTextures, glEnd, glGet, glGetTexParameter, glIsTexture,
glTexImage1D, glTexImage2D, glTexParameter

glGetBooleanv, glGetDoublev,
glGetFloatv, glGetIntegerv

[New - Windows 95, OEM Service Release 2]

These functions return the value or values of a selected parameter.

void glGetBooleanv(
        GLenum pname,
        GLboolean * params
     );

void glGetDoublev(
        GLenum pname,
        GLdouble * params
     );

void glGetFloatv(
        GLenum pname,
        GLfloat * params
     );

void glGetIntegerv(
        GLenum pname,
        GLint * params
     );

Parameters
pname

The parameter value to be returned. The following symbolic constants are accepted:
GL_ACCUM_ALPHA_BITS

The params parameter returns one value: the number of alpha bitplanes in the accumulation buffer.
GL_ACCUM_BLUE_BITS

The params parameter returns one value: the number of blue bitplanes in the accumulation buffer.
GL_ACCUM_CLEAR_VALUE

The params parameter returns four values: the red, green, blue, and alpha values used to clear the
accumulation buffer. Integer values, if requested, are linearly mapped from the internal floating-
point representation such that 1.0 returns the most positive representable integer value, and -1.0
returns the most negative representable integer value. See glClearAccum.

GL_ACCUM_GREEN_BITS
The params parameter returns one value: the number of green bitplanes in the accumulation
buffer.

GL_ACCUM_RED_BITS
The params parameter returns one value: the number of red bitplanes in the accumulation buffer.

GL_ALPHA_BIAS
The params parameter returns one value: the alpha bias factor used during pixel transfers. See
glPixelTransfer.

GL_ALPHA_BITS
The params parameter returns one value: the number of alpha bitplanes in each color buffer.

GL_ALPHA_SCALE
The params parameter returns one value: the alpha scale factor used during pixel transfers. See
glPixelTransfer.

GL_ALPHA_TEST

The params parameter returns a single Boolean value indicating whether alpha testing of
fragments is enabled. See glAlphaFunc.

GL_ALPHA_TEST_FUNC
The params parameter returns one value: the symbolic name of the alpha test function. See
glAlphaFunc.

GL_ALPHA_TEST_REF
The params parameter returns one value: the reference value for the alpha test. See
glAlphaFunc. An integer value, if requested, is linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value.

GL_ATTRIB_STACK_DEPTH
The params parameter returns one value: the depth of the attribute stack. If the stack is empty,
zero is returned. See glPushAttrib.

GL_AUTO_NORMAL
The params parameter returns a single Boolean value indicating whether 2-D map evaluation
automatically generates surface normals. See glMap2.

GL_AUX_BUFFERS
The params parameter returns one value: the number of auxiliary color buffers.

GL_BLEND
The params parameter returns a single Boolean value indicating whether blending is enabled. See
glBlendFunc.

GL_BLEND_DST
The params parameter returns one value: the symbolic constant identifying the destination blend
function. See glBlendFunc.

GL_BLEND_SRC
The params parameter returns one value: the symbolic constant identifying the source blend
function. See glBlendFunc.

GL_BLUE_BIAS
The params parameter returns one value: the blue bias factor used during pixel transfers. See
glPixelTransfer.

GL_BLUE_BITS
The params parameter returns one value: the number of blue bitplanes in each color buffer.

GL_BLUE_SCALE
The params parameter returns one value: the blue scale factor used during pixel transfers. See
glPixelTransfer.

GL_CLIP_PLANEi
The params parameter returns a single Boolean value indicating whether the specified clipping
plane is enabled. See glClipPlane.

GL_COLOR_CLEAR_VALUE
The params parameter returns four values: the red, green, blue, and alpha values used to clear the
color buffers. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value. See glClearColor.

GL_COLOR_MATERIAL
The params parameter returns a single Boolean value indicating whether one or more material
parameters are tracking the current color. See glColorMaterial.

GL_COLOR_MATERIAL_FACE
The params parameter returns one value: a symbolic constant indicating which materials have a
parameter that is tracking the current color. See glColorMaterial.

GL_COLOR_MATERIAL_PARAMETER
The params parameter returns one value: a symbolic constant indicating which material
parameters are tracking the current color. See glColorMaterial.

GL_COLOR_WRITEMASK
The params parameter returns four Boolean values: the red, green, blue, and alpha write enables
for the color buffers. See glColorMask.

GL_CULL_FACE
The params parameter returns a single Boolean value indicating whether polygon culling is
enabled. See glCullFace.

GL_CULL_FACE_MODE
The params parameter returns one value: a symbolic constant indicating which polygon faces are
to be culled. See glCullFace.

GL_CURRENT_COLOR
The params parameter returns four values: the red, green, blue, and alpha values of the current
color. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value. See glColor.

GL_CURRENT_INDEX
The params parameter returns one value: the current color index. See glIndex.

GL_CURRENT_NORMAL
The params parameter returns three values: the x, y, and z values of the current normal. Integer
values, if requested, are linearly mapped from the internal floating-point representation such that
1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. See glNormal.

GL_CURRENT_RASTER_COLOR
The params parameter returns four values: the red, green, blue, and alpha values of the current
raster position. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value. See glRasterPos.

GL_CURRENT_RASTER_DISTANCE
The params parameter returns one value: the distance from the eye to the current raster position.
See glRasterPos.

GL_CURRENT_RASTER_INDEX
The params parameter returns one value: the color index of the current raster position. See
glRasterPos.

GL_CURRENT_RASTER_POSITION
The params parameter returns four values: the x, y, z, and w components of the current raster
position. The x, y, and z components are in window coordinates, and w is in clip coordinates. See
glRasterPos.

GL_CURRENT_RASTER_TEXTURE_COORDS
The params parameter returns four values: the s, t, r, and q current raster texture coordinates. See
glRasterPos and glTexCoord.

GL_CURRENT_RASTER_POSITION_VALID
The params parameter returns a single Boolean value indicating whether the current raster
position is valid. See glRasterPos.

GL_CURRENT_TEXTURE_COORDS
The params parameter returns four values: the s, t, r, and q current texture coordinates. See
glTexCoord.

GL_DEPTH_BIAS
The params parameter returns one value: the depth bias factor used during pixel transfers. See
glPixelTransfer.

GL_DEPTH_BITS
The params parameter returns one value: the number of bitplanes in the depth buffer.

GL_DEPTH_CLEAR_VALUE
The params parameter returns one value: the value that is used to clear the depth buffer. Integer

values, if requested, are linearly mapped from the internal floating-point representation such that
1.0 returns the most positive representable integer value, and -1.0 returns the most negative
representable integer value. See glClearDepth.

GL_DEPTH_FUNC
The params parameter returns one value: the symbolic constant that indicates the depth
comparison function. See glDepthFunc.

GL_DEPTH_RANGE
The params parameter returns two values: the near and far mapping limits for the depth buffer.
Integer values, if requested, are linearly mapped from the internal floating-point representation
such that 1.0 returns the most positive representable integer value, and -1.0 returns the most
negative representable integer value. See glDepthRange.

GL_DEPTH_SCALE
The params parameter returns one value: the depth scale factor used during pixel transfers. See
glPixelTransfer.

GL_DEPTH_TEST
The params parameter returns a single Boolean value indicating whether depth testing of
fragments is enabled. See glDepthFunc and glDepthRange.

GL_DEPTH_WRITEMASK
The params parameter returns a single Boolean value indicating if the depth buffer is enabled for
writing. See glDepthMask.

GL_DITHER
The params parameter returns a single Boolean value indicating whether dithering of fragment
colors and indexes is enabled.

GL_DOUBLEBUFFER
The params parameter returns a single Boolean value indicating whether double buffering is
supported.

GL_DRAW_BUFFER
The params parameter returns one value: a symbolic constant indicating which buffers are being
drawn to. See glDrawBuffer.

GL_EDGE_FLAG
The params parameter returns a single Boolean value indicating whether the current edge flag is
true or false. See glEdgeFlag.

GL_FOG
The params parameter returns a single Boolean value indicating whether fogging is enabled. See
glFog.

GL_FOG_COLOR
The params parameter returns four values: the red, green, blue, and alpha components of the fog
color. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value. See glFog.

GL_FOG_DENSITY
The params parameter returns one value: the fog density parameter. See glFog.

GL_FOG_END
The params parameter returns one value: the end factor for the linear fog equation. See glFog.

GL_FOG_HINT
The params parameter returns one value: a symbolic constant indicating the mode of the fog hint.
See glHint.

GL_FOG_INDEX
The params parameter returns one value: the fog color index. See glFog.

GL_FOG_MODE
The params parameter returns one value: a symbolic constant indicating which fog equation is
selected. See glFog.

GL_FOG_START
The params parameter returns one value: the start factor for the linear fog equation. See glFog.

GL_FRONT_FACE
The params parameter returns one value: a symbolic constant indicating whether clockwise or
counterclockwise polygon winding is treated as front-facing. See glFrontFace.

GL_GREEN_BIAS
The params parameter returns one value: the green bias factor used during pixel transfers.

GL_GREEN_BITS
The params parameter returns one value: the number of green bitplanes in each color buffer.

GL_GREEN_SCALE
The params parameter returns one value: the green scale factor used during pixel transfers. See
glPixelTransfer.

GL_INDEX_BITS
The params parameter returns one value: the number of bitplanes in each color-index buffer.

GL_INDEX_CLEAR_VALUE
The params parameter returns one value: the color index used to clear the color-index buffers. See
glClearIndex.

GL_INDEX_MODE
The params parameter returns a single Boolean value indicating whether OpenGL is in color-index
mode (TRUE) or RGBA mode (FALSE).

GL_INDEX_OFFSET
The params parameter returns one value: the offset added to color and stencil indexes during pixel
transfers. See glPixelTransfer.

GL_INDEX_SHIFT
The params parameter returns one value: the amount that color and stencil indexes are shifted
during pixel transfers. See glPixelTransfer.

GL_INDEX_WRITEMASK
The params parameter returns one value: a mask indicating which bitplanes of each color-index
buffer can be written. See glIndexMask.

GL_LIGHTi
The params parameter returns a single Boolean value indicating whether the specified light is
enabled. See glLight and glLightModel.

GL_LIGHTING
The params parameter returns a single Boolean value indicating whether lighting is enabled. See
glLightModel.

GL_LIGHT_MODEL_AMBIENT
The params parameter returns four values: the red, green, blue, and alpha components of the
ambient intensity of the entire scene. Integer values, if requested, are linearly mapped from the
internal floating-point representation such that 1.0 returns the most positive representable integer
value, and -1.0 returns the most negative representable integer value. See glLightModel.

GL_LIGHT_MODEL_LOCAL_VIEWER
The params parameter returns a single Boolean value indicating whether specular reflection
calculations treat the viewer as being local to the scene. See glLightModel.

GL_LIGHT_MODEL_TWO_SIDE
The params parameter returns a single Boolean value indicating whether separate materials are
used to compute lighting for front- and back-facing polygons. See glLightModel.

GL_LINE_SMOOTH
The params parameter returns a single Boolean value indicating whether antialiasing of lines is
enabled. See glLineWidth.

GL_LINE_SMOOTH_HINT
The params parameter returns one value: a symbolic constant indicating the mode of the line
antialiasing hint. See glHint.

GL_LINE_STIPPLE
The params parameter returns a single Boolean value indicating whether stippling of lines is
enabled. See glLineStipple.

GL_LINE_STIPPLE_PATTERN
The params parameter returns one value: the 16-bit line stipple pattern. See glLineStipple.

GL_LINE_STIPPLE_REPEAT
The params parameter returns one value: the line stipple repeat factor. See glLineStipple.

GL_LINE_WIDTH
The params parameter returns one value: the line width as specified with glLineWidth.

GL_LINE_WIDTH_GRANULARITY
The params parameter returns one value: the width difference between adjacent supported widths
for antialiased lines. See glLineWidth.

GL_LINE_WIDTH_RANGE
The params parameter returns two values: the smallest and largest supported widths for
antialiased lines. See glLineWidth.

GL_LIST_BASE
The params parameter returns one value: the base offset added to all names in arrays presented
to glCallLists. See glListBase.

GL_LIST_INDEX
The params parameter returns one value: the name of the display list currently under construction.
Zero is returned if no display list is currently under construction. See glNewList.

GL_LIST_MODE
The params parameter returns one value: a symbolic constant indicating the construction mode of
the display list currently being constructed. See glNewList.

GL_LOGIC_OP
The params parameter returns a single Boolean value indicating whether fragment indexes are
merged into the frame buffer using a logical operation. See glLogicOp.

GL_LOGIC_OP_MODE
The params parameter returns one value: a symbolic constant indicating the selected logic
operational mode. See glLogicOp.

GL_MAP1_COLOR_4
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
colors. See glMap1.

GL_MAP1_GRID_DOMAIN
The params parameter returns two values: the endpoints of the 1-D maps grid domain. See
glMapGrid.

GL_MAP1_GRID_SEGMENTS
The params parameter returns one value: the number of partitions in the 1-D maps grid domain.
See glMapGrid.

GL_MAP1_INDEX
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
color indexes. See glMap1.

GL_MAP1_NORMAL
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
normals. See glMap1.

GL_MAP1_TEXTURE_COORD_1
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
1-D texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_2
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
2-D texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_3

The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
3-D texture coordinates. See glMap1.

GL_MAP1_TEXTURE_COORD_4
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
4-D texture coordinates. See glMap1.

GL_MAP1_VERTEX_3
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
3-D vertex coordinates. See glMap1.

GL_MAP1_VERTEX_4
The params parameter returns a single Boolean value indicating whether 1-D evaluation generates
4-D vertex coordinates. See glMap1.

GL_MAP2_COLOR_4
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
colors. See glMap2.

GL_MAP2_GRID_DOMAIN
The params parameter returns four values: the endpoints of the 2-D maps i and j grid domains.
See glMapGrid.

GL_MAP2_GRID_SEGMENTS
The params parameter returns two values: the number of partitions in the 2-D maps i and j grid
domains. See glMapGrid.

GL_MAP2_INDEX
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
color indexes. See glMap2.

GL_MAP2_NORMAL
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
normals. See glMap2.

GL_MAP2_TEXTURE_COORD_1
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
1-D texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_2
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
2-D texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_3
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
3-D texture coordinates. See glMap2.

GL_MAP2_TEXTURE_COORD_4
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
4-D texture coordinates. See glMap2.

GL_MAP2_VERTEX_3
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
3-D vertex coordinates. See glMap2.

GL_MAP2_VERTEX_4
The params parameter returns a single Boolean value indicating whether 2-D evaluation generates
4-D vertex coordinates. See glMap2.

GL_MAP_COLOR
The params parameter returns a single Boolean value indicating whether colors and color indexes
are to be replaced by table lookup during pixel transfers. See glPixelTransfer.

GL_MAP_STENCIL
The params parameter returns a single Boolean value indicating whether stencil indexes are to be
replaced by table lookup during pixel transfers. See glPixelTransfer.

GL_MATRIX_MODE
The params parameter returns one value: a symbolic constant indicating which matrix stack is

currently the target of all matrix operations. See glMatrixMode.
GL_MAX_ATTRIB_STACK_DEPTH

The params parameter returns one value: the maximum supported depth of the attribute stack.
See glPushAttrib.

GL_MAX_CLIP_PLANES
The params parameter returns one value: the maximum number of application-defined clipping
planes. See glClipPlane.

GL_MAX_EVAL_ORDER
The params parameter returns one value: the maximum equation order supported by 1-D and 2-D
evaluators. See glMap1 and glMap2.

GL_MAX_LIGHTS
The params parameter returns one value: the maximum number of lights. See glLight.

GL_MAX_LIST_NESTING
The params parameter returns one value: the maximum recursion depth allowed during display-list
traversal. See glCallList.

GL_MAX_MODELVIEW_STACK_DEPTH
The params parameter returns one value: the maximum supported depth of the modelview matrix
stack. See glPushMatrix.

GL_MAX_NAME_STACK_DEPTH
The params parameter returns one value: the maximum supported depth of the selection name
stack. See glPushName.

GL_MAX_PIXEL_MAP_TABLE
The params parameter returns one value: the maximum supported size of a glPixelMap lookup
table. See glPixelMap.

GL_MAX_PROJECTION_STACK_DEPTH
The params parameter returns one value: the maximum supported depth of the projection matrix
stack. See glPushMatrix.

GL_MAX_TEXTURE_SIZE
The params parameter returns one value: the maximum width or height of any texture image
(without borders). See glTexImage1D and glTexImage2D.

GL_MAX_TEXTURE_STACK_DEPTH
The params parameter returns one value: the maximum supported depth of the texture matrix
stack. See glPushMatrix.

GL_MAX_VIEWPORT_DIMS
The params parameter returns two values: the maximum supported width and height of the
viewport. See glViewport.

GL_MODELVIEW_MATRIX
The params parameter returns 16 values: the modelview matrix on the top of the modelview matrix
stack. See glPushMatrix.

GL_MODELVIEW_STACK_DEPTH
The params parameter returns one value: the number of matrices on the modelview matrix stack.
See glPushMatrix.

GL_NAME_STACK_DEPTH
The params parameter returns one value: the number of names on the selection name stack. See
glPushMatrix.

GL_NORMALIZE
The params parameter returns a single Boolean value indicating whether normals are
automatically scaled to unit length after they have been transformed to eye coordinates. See
glNormal.

GL_PACK_ALIGNMENT
The params parameter returns one value: the byte alignment used for writing pixel data to memory.
See glPixelStore.

GL_PACK_LSB_FIRST
The params parameter returns a single Boolean value indicating whether single-bit pixels being
written to memory are written first to the least significant bit of each unsigned byte. See
glPixelStore.

GL_PACK_ROW_LENGTH
The params parameter returns one value: the row length used for writing pixel data to memory.
See glPixelStore.

GL_PACK_SKIP_PIXELS
The params parameter returns one value: the number of pixel locations skipped before the first
pixel is written into memory. See glPixelStore.

GL_PACK_SKIP_ROWS
The params parameter returns one value: the number of rows of pixel locations skipped before the
first pixel is written into memory. See glPixelStore.

GL_PACK_SWAP_BYTES
The params parameter returns a single Boolean value indicating whether the bytes of 2-byte and
4-byte pixel indexes and components are swapped before being written to memory. See
glPixelStore.

GL_PERSPECTIVE_CORRECTION_HINT
The params parameter returns one value: a symbolic constant indicating the mode of the
perspective correction hint. See glHint.

GL_PIXEL_MAP_A_TO_A_SIZE
The params parameter returns one value: the size of the alpha-to-alpha pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_B_TO_B_SIZE
The params parameter returns one value: the size of the blue-to-blue pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_G_TO_G_SIZE
The params parameter returns one value: the size of the green-to-green pixel-translation table.
See glPixelMap.

GL_PIXEL_MAP_I_TO_A_SIZE
The params parameter returns one value: the size of the index-to-alpha pixel translation table. See
glPixelMap.

GL_PIXEL_MAP_I_TO_B_SIZE
The params parameter returns one value: the size of the index-to-blue pixel translation table. See
glPixelMap.

GL_PIXEL_MAP_I_TO_G_SIZE
The params parameter returns one value: the size of the index-to-green pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_I_TO_I_SIZE
The params parameter returns one value: the size of the index-to-index pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_I_TO_R_SIZE
The params parameter returns one value: the size of the index-to-red pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_R_TO_R_SIZE
The params parameter returns one value: the size of the red-to-red pixel-translation table. See
glPixelMap.

GL_PIXEL_MAP_S_TO_S_SIZE
The params parameter returns one value: the size of the stencil-to-stencil pixel translation table.
See glPixelMap.

GL_POINT_SIZE
The params parameter returns one value: the point size as specified by glPointSize.

GL_POINT_SIZE_GRANULARITY
The params parameter returns one value: the size difference between adjacent supported sizes for
antialiased points. See glPointSize.

GL_POINT_SIZE_RANGE
The params parameter returns two values: the smallest and largest supported sizes for antialiased
points. See glPointSize.

GL_POINT_SMOOTH
The params parameter returns a single Boolean value indicating whether antialiasing of points is
enabled. See glPointSize.

GL_POINT_SMOOTH_HINT
The params parameter returns one value: a symbolic constant indicating the mode of the point
antialiasing hint. See glHint.

GL_POLYGON_MODE
The params parameter returns two values: symbolic constants indicating whether front-facing and
back-facing polygons are rasterized as points, lines, or filled polygons. See glPolygonMode.

GL_POLYGON_SMOOTH
The params parameter returns a single Boolean value indicating whether antialiasing of polygons
is enabled. See glPolygonMode.

GL_POLYGON_SMOOTH_HINT
The params parameter returns one value: a symbolic constant indicating the mode of the polygon
antialiasing hint. See glHint.

GL_POLYGON_STIPPLE
The params parameter returns a single Boolean value indicating whether stippling of polygons is
enabled. See glPolygonStipple.

GL_PROJECTION_MATRIX
The params parameter returns 16 values: the projection matrix on the top of the projection matrix
stack. See glPushMatrix.

GL_PROJECTION_STACK_DEPTH
The params parameter returns one value: the number of matrices on the projection matrix stack.
See glPushMatrix.

GL_READ_BUFFER
The params parameter returns one value: a symbolic constant indicating which color buffer is
selected for reading. See glReadPixels and glAccum.

GL_RED_BIAS
The params parameter returns one value: the red bias factor used during pixel transfers. See
glPixelTransfer.

GL_RED_BITS
The params parameter returns one value: the number of red bitplanes in each color buffer.

GL_RED_SCALE
The params parameter returns one value: the red scale factor used during pixel transfers. See
glPixelTransfer.

GL_RENDER_MODE
The params parameter returns one value: a symbolic constant indicating whether OpenGL is in
render, select, or feedback mode. See glRenderMode.

GL_RGBA_MODE
The params parameter returns a single Boolean value indicating whether OpenGL is in RGBA
mode (TRUE) or color-index mode (FALSE). See glColor.

GL_SCISSOR_BOX
The params parameter returns four values: the x and y window coordinates of the scissor box,
followed by its width and height. See glScissor.

GL_SCISSOR_TEST
The params parameter returns a single Boolean value indicating whether scissoring is enabled.

See glScissor.
GL_SHADE_MODEL

The params parameter returns one value: a symbolic constant indicating whether the shading
mode is flat or smooth. See glShadeModel.

GL_STENCIL_BITS
The params parameter returns one value: the number of bitplanes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE
The params parameter returns one value: the index to which the stencil bitplanes are cleared. See
glClearStencil.

GL_STENCIL_FAIL
The params parameter returns one value: a symbolic constant indicating what action is taken when
the stencil test fails. See glStencilOp.

GL_STENCIL_FUNC
The params parameter returns one value: a symbolic constant indicating what function is used to
compare the stencil reference value with the stencil buffer value. See glStencilFunc.

GL_STENCIL_PASS_DEPTH_FAIL
The params parameter returns one value: a symbolic constant indicating what action is taken when
the stencil test passes, but the depth test fails. See glStencilOp.

GL_STENCIL_PASS_DEPTH_PASS
The params parameter returns one value: a symbolic constant indicating what action is taken when
the stencil test passes and the depth test passes. See glStencilOp.

GL_STENCIL_REF
The params parameter returns one value: the reference value that is compared with the contents
of the stencil buffer. See glStencilFunc.

GL_STENCIL_TEST
The params parameter returns a single Boolean value indicating whether stencil testing of
fragments is enabled. See glStencilFunc and glStencilOp.

GL_STENCIL_VALUE_MASK
The params parameter returns one value: the mask that is used to mask both the stencil reference
value and the stencil buffer value before they are compared. See glStencilFunc.

GL_STENCIL_WRITEMASK
The params parameter returns one value: the mask that controls writing of the stencil bitplanes.
See glStencilMask.

GL_STEREO
The params parameter returns a single Boolean value indicating whether stereo buffers (left and
right) are supported.

GL_SUBPIXEL_BITS
The params parameter returns one value: an estimate of the number of bits of subpixel resolution
that are used to position rasterized geometry in window coordinates.

GL_TEXTURE_1D
The params parameter returns a single Boolean value indicating whether 1-D texture mapping is
enabled. See glTexImage1D.

GL_TEXTURE_2D
The params parameter returns a single Boolean value indicating whether 2-D texture mapping is
enabled. See glTexImage2D.

GL_TEXTURE_ENV_COLOR
The params parameter returns four values: the red, green, blue, and alpha values of the texture
environment color. Integer values, if requested, are linearly mapped from the internal floating-point
representation such that 1.0 returns the most positive representable integer value, and -1.0 returns
the most negative representable integer value. See glTexEnv.

GL_TEXTURE_ENV_MODE
The params parameter returns one value: a symbolic constant indicating which texture

environment function is currently selected. See glTexEnv.
GL_TEXTURE_GEN_S

The params parameter returns a single Boolean value indicating whether automatic generation of
the S texture coordinate is enabled. See glTexGen.

GL_TEXTURE_GEN_T
The params parameter returns a single Boolean value indicating whether automatic generation of
the T texture coordinate is enabled. See glTexGen.

GL_TEXTURE_GEN_R
The params parameter returns a single Boolean value indicating whether automatic generation of
the R texture coordinate is enabled. See glTexGen.

GL_TEXTURE_GEN_Q
The params parameter returns a single Boolean value indicating whether automatic generation of
the Q texture coordinate is enabled. See glTexGen.

GL_TEXTURE_MATRIX
The params parameter returns 16 values: the texture matrix on the top of the texture matrix stack.
See glPushMatrix.

GL_TEXTURE_STACK_DEPTH
The params parameter returns one value: the number of matrices on the texture matrix stack. See
glPushMatrix.

GL_UNPACK_ALIGNMENT
The params parameter returns one value: the byte alignment used for reading pixel data from
memory. See glPixelStore.

GL_UNPACK_LSB_FIRST
The params parameter returns a single Boolean value indicating whether single-bit pixels being
read from memory are read first from the least significant bit of each unsigned byte. See
glPixelStore.

GL_UNPACK_ROW_LENGTH
The params parameter returns one value: the row length used for reading pixel data from memory.
See glPixelStore.

GL_UNPACK_SKIP_PIXELS
The params parameter returns one value: the number of pixel locations skipped before the first
pixel is read from memory. See glPixelStore.

GL_UNPACK_SKIP_ROWS
The params parameter returns one value: the number of rows of pixel locations skipped before the
first pixel is read from memory. See glPixelStore.

GL_UNPACK_SWAP_BYTES
The params parameter returns a single Boolean value indicating whether the bytes of 2-byte and
4-byte pixel indexes and components are swapped after being read from memory. See
glPixelStore.

GL_VIEWPORT
The params parameter returns four values: the x and y window coordinates of the viewport,
followed by its width and height. See glViewport.

GL_ZOOM_X
The params parameter returns one value: the x pixel zoom factor. See glPixelZoom.

GL_ZOOM_Y
The params parameter returns one value: the y pixel zoom factor. See glPixelZoom.

params
Returns the value or values of the specified parameter.

Remarks
These four functions return values for simple state variables in OpenGL. The pname parameter is a
symbolic constant indicating the state variable to be returned, and params is a pointer to an array of the

indicated type in which to place the returned data.

Type conversion is performed if params has a different type from the state variable value being
requested. If you call glGetBooleanv, a floating-point or integer value is converted to GL_FALSE if and
only if it is zero. Otherwise, it is converted to GL_TRUE.

If you call glGetIntegerv, Boolean values are returned as GL_TRUE or GL_FALSE, and most floating-
point values are rounded to the nearest integer value. Floating-point colors and normals, however, are
returned with a linear mapping that maps 1.0 to the most positive representable integer value and -1.0 to
the most negative representable integer value.

If you call glGetFloatv or glGetDoublev, Boolean values are returned as GL_TRUE or GL_FALSE, and
integer values are converted to floating-point values.

You can query many of the Boolean parameters more easily with glIsEnabled.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.
GL_INVALID_OPERATION glGet was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glAccum, glAlphaFunc, glBegin, glBlendFunc, glCallList, glClearAccum, glClearColor,
glClearDepth, glClearIndex, glClearStencil, glClipPlane, glColor, glColorMask, glColorMaterial,
glCullFace, glDepthFunc, glDepthMask, glDepthRange, glDrawBuffer, glEdgeFlag, glEnd, glFog,
glFrontFace, glGetClipPlane, glGetError, glGetLight, glGetMap, glGetMaterial, glGetPixelMap,
glGetPolygonStipple, glGetString, glGetTexEnv, glGetTexGen, glGetTexImage,
glGetTexLevelParameter, glGetTexParameter, glHint, glIndex, glIndexMask, glIsEnabled, glLight,
glLightModel, glLineStipple, glLineWidth, glListBase, glLogicOp, glMap1, glMap2, glMapGrid,
glMatrixMode, glNewList, glNormal, glPixelMap, glPixelStore, glPixelTransfer, glPixelZoom,
glPointSize, glPolygonMode, glPolygonStipple, glPushAttrib, glPushMatrix, glPushName,
glRasterPos, glReadPixels, glScissor, glShadeModel, glStencilFunc, glStencilMask, glStencilOp,
glTexCoord, glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glViewport

glGetClipPlane   

[New - Windows 95, OEM Service Release 2]

The glGetClipPlane function returns the coefficients of the specified clipping plane.

void glGetClipPlane(
        GLenum plane,
        GLdouble * equation
     );

Parameters
plane

A clipping plane. The number of clipping planes depends on the implementation, but at least six
clipping planes are supported. They are identified by symbolic names of the form GL_CLIP_PLANEi
where 0 £ i < GL_MAX_CLIP_PLANES.

equation
Returns four double-precision values that are the coefficients of the plane equation of plane in eye
coordinates.

Remarks
The glGetClipPlane function returns in equation the four coefficients of the plane equation for plane.

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

If an error is generated, no change is made to the contents of equation.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM plane was not an accepted value.
GL_INVALID_OPERATION glGetClipPlane was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glClipPlane, glEnd

glGetColorTableEXT
[New - Windows 95, OEM Service Release 2]

The glGetColorTableEXT function gets the color table data of the current targeted texture palette.

void glGetColorTableEXT(
        GLenum target,
        GLenum format,
        GLenum type,
        const GLvoid * data
     );

Parameters
target

The target texture that is to have its palette changed. Must be TEXTURE_1D or TEXTURE_2D.
format

The format of the pixel data. The following symbolic constants are accepted:
GL_RGBA

Each pixel is a group of four components in the following order: red, green, blue, alpha. The RGBA
format is determined in this way:
1. The glGetColorTableEXT function converts floating-point values directly to an internal
format with unspecified precision. Signed integer values are mapped linearly to the internal format
such that the most positive representable integer value maps to 1.0, and the most negative
representable integer value maps to - 1.0. Unsigned integer data is mapped similarly: the largest
integer value maps to 1.0, and zero maps to 0.0.
2. The glGetColorTableEXT function multiplies the resulting color values by GL_c_SCALE
and adds them to GL_c_BIAS, where c is RED, GREEN, BLUE, and ALPHA for the respective
color components. The results are clamped to the range [0,1].
3. If GL_MAP_COLOR is TRUE, glGetColorTableEXT scales each color component by the
size of lookup table GL_PIXEL_MAP_c_TO_c, then replaces the component by the value that it
references in that table; c is R, G, B, or A, respectively.
4. The glGetColorTableEXT function converts the resulting RGBA colors to fragments by
attaching the current raster position z-coordinate and texture coordinates to each pixel, then
assigning x and y window coordinates to the nth fragment such that
x (n) = x (r) + n mod width
y (n) = y (r) + ë n/width û
where (x (r) , y (r)) is the current raster position.
5. These pixel fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. The glGetColorTableEXT function applies texture mapping, fog, and all
the fragment operations before writing the fragments to the frame buffer.

GL_RED
Each pixel is a single red component.
The glGetColorTableEXT function converts this component to the internal format in the same way
that the red component of an RGBA pixel is, then converts it to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been read
as an RGBA pixel.

GL_GREEN
Each pixel is a single green component.
The glGetColorTableEXT function converts this component to the internal format in the same way
that the green component of an RGBA pixel is, and then converts it to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an RGBA pixel.
GL_BLUE

Each pixel is a single blue component.
The glGetColorTableEXT function converts this component to the internal format in the same way
that the blue component of an RGBA pixel is, and then converts it to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an RGBA pixel.

GL_ALPHA
Each pixel is a single alpha component.
The glGetColorTableEXT function converts this component to the internal format in the same way
that the alpha component of an RGBA pixel is, and then converts it to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just as if it had been read as an
RGBA pixel.

GL_RGB
Each pixel is a group of three components in this order: red, green, blue.
The glGetColorTableEXT function converts each component to the internal format in the same
way that the red, green, and blue components of an RGBA pixel are. The color triple is converted
to an RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated just as if it had
been read as an RGBA pixel.

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.
GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

type
The data type for data. The following symbolic constants are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.
The following table summarizes the meaning of the valid constants for the type parameter.

Constant Meaning
GL_UNSIGNED_BYTE Unsigned 8-bit integer
GL_BYTE Signed 8-bit integer
GL_UNSIGNED_SHORT Unsigned 16-bit integer
GL_SHORT Signed 16-bit integer
GL_UNSIGNED_INT Unsigned 32-bit integer
GL_INT 32-bit integer
GL_FLOAT Single-precision floating-point

value

data
Points to the location where returned color table information is to be stored. Each color table entry is
stored as if it was a single pixel of a 1-D texture. Because all textures have a default palette,
glGetColorTableEXT always returns palette information even if the texture data is not in a paletted
format.

Remarks
The glGetColorTableEXT function gets the actual color table data specified by glColorTableEXT and

glColorSubTableEXT.

Note    The glGetColorTableEXT function is an extension function that is not part of the standard
OpenGL library but is part of the GL_EXT_paletted_texture extension. To check whether your
implementation of OpenGL supports glGetColorTableEXT, call glGetString(GL_EXTENSIONS). If it
returns GL_EXT_paletted_texture, glGetColorTableEXT is supported. To obtain the function address
of an extension function, call wglGetProcAddress.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target, format, or type was not an

accepted value.
GL_INVALID_OPERATION glGetColorTableEXT was called

between glBegin and glEnd pairs.

See Also
glColorSubTableEXT, glColorTableEXT, glGetColorTableParameterfvEXT,
glGetColorTableParameterivEXT, wglGetProcAddress

glGetColorTableParameterfvEXT,
glGetColorTableParameterivEXT

[New - Windows 95, OEM Service Release 2]

The glGetColorTableParameterfvEXT and glGetColorTableParameterivEXT functions get palette
parameters from color tables.

void glGetColorTableParameterfvEXT(
        GLenum target,
        GLenum pname,
        GLint * params
     );

void glGetColorTableParameterivEXT(
        GLenum target,
        GLenum pname,
        GLint * params
     );

Parameters
target

The target texture of the palette for which you want parameter data. Must be TEXTURE_1D,
TEXTURE_2D, PROXY_TEXTURE_1D, or PROXY_TEXTURE_2D.

pname
A symbolic constant for the type of palette parameter data pointed to by params.
The following table summarizes the meaning of the valid constants for the pname parameter.

Constant Meaning
GL_COLOR_TABLE_FORMAT_EXT Return the internal format

specified by the most recent call
to glColorTableEXT or the
default value.

GL_COLOR_TABLE_WIDTH_EXT Return the width of the current
palette.

GL_COLOR_TABLE_RED_SIZE_EXT Return the actual size used
internally to store the red
component of the palette data.

GL_COLOR_TABLE_GREEN_SIZE_EX
T

Return the actual size used
internally to store the green
component of the palette data.

GL_COLOR_TABLE_BLUE_SIZE_EXT Return the actual size used
internally to store the blue
component of the palette data.

GL_COLOR_TABLE_ALPHA_SIZE_EX
T

Return the actual size used
internally to store the alpha
component of the palette data.

params
Points to the color table parameter data specified by the pname parameter.

Remarks
You use the glGetColorTableParameterivEXT and glGetColorTableParameterfvEXT functions to

retrieve specific parameter data from color tables set with glColorTableEXT for targeted texture palettes.
Also you can use these functions to determine the number of color table entries that
glGetColorTableEXT returns.

When the target parameter is GL_PROXY_TEXTURE_1D or GL_PROXY_TEXTURE_2D, and the
implementation does not support the values specified for either format or width, glColorTableEXT can fail
to create the requested color table. In this case, the color table is empty and all parameters retrieved will
be zero. You can determine whether OpenGL supports a particular color table format and size by calling
glColorTableEXT with a proxy target, and then calling glGetColorTableParameterivEXT or
glGetColorTableParameterfvEXT to determine whether the width parameter matches that set by
glColorTableEXT. If the retrieved width is zero, the color table request by glColorTable failed. If the
retrieved width is not zero, you can call glColorTable with the real target with TEXTURE_1D or
TEXTURE_2D to set the color table.

Note    The glGetColorTableParameterivEXT and glGetColorTableParameterfvEXT functions are
extension functions that are not part of the standard OpenGL library but are part of the
GL_EXT_paletted_texture extension. To check whether your implementation of OpenGL supports
glGetColorTableParameterivEXT and glGetColorTableParameterfvEXT, call
glGetString(GL_EXTENSIONS). If it returns GL_EXT_paletted_texture,
glGetColorTableParameterivEXT and glGetColorTableParameterfvEXT are supported. To obtain
the function address of an extension function, call wglGetProcAddress.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or pname was not an accepted

value.
GL_INVALID_OPERATION glGetColorTableParameterivEXT or

glGetColorTableParameterfvEXT
was called between glBegin and
glEnd pairs.

See Also
glColorSubTableEXT, glColorTableEXT, glGetColorTableEXT, wglGetProcAddress

glGetError   

[New - Windows 95, OEM Service Release 2]

The glGetError function returns error information.

GLenum glGetError(
        void
     );

Remarks
The glGetError function returns the value of the error flag. Each detectable error is assigned a numeric
code and symbolic name. When an error occurs, the error flag is set to the appropriate error code value.
No other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no detectable error
since the last call to glGetError, or since OpenGL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag has
recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR when
glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an
arbitrary error flag value. If all error flags are to be reset, you should always call glGetError in a loop until
it returns GL_NO_ERROR.

Initially, all error flags are set to GL_NO_ERROR.

The following are the currently defined errors:

GL_NO_ERROR
No error has been recorded. The value of this symbolic constant is guaranteed to be zero.

GL_INVALID_ENUM
An unacceptable value is specified for an enumerated argument. The offending function is ignored,
having no side effect other than to set the error flag.

GL_INVALID_VALUE
A numeric argument is out of range. The offending function is ignored, having no side effect other
than to set the error flag.

GL_INVALID_OPERATION
The specified operation is not allowed in the current state. The offending function is ignored, having
no side effect other than to set the error flag.

GL_STACK_OVERFLOW
This function would cause a stack overflow. The offending function is ignored, having no side effect
other than to set the error flag.

GL_STACK_UNDERFLOW
This function would cause a stack underflow. The offending function is ignored, having no side effect
other than to set the error flag.

GL_OUT_OF_MEMORY
There is not enough memory left to execute the function. The state of OpenGL is undefined, except
for the state of the error flags, after this error is recorded.

When an error flag is set, results of an OpenGL operation are undefined only if GL_OUT_OF_MEMORY
has occurred. In all other cases, the function generating the error is ignored and has no effect on the
OpenGL state or frame buffer contents.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glGetError was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd

glGetLightfv, glGetLightiv
[New - Windows 95, OEM Service Release 2]

The glGetLightfv and glGetLightiv functions return light source parameter values.

void glGetLightfv(
        GLenum light,
        GLenum pname,
        GLfloat * params
     );

void glGetLightiv(
        GLenum light,
        GLenum pname,
        GLint * params
     );

Parameters
light

A light source. The number of possible lights depends on the implementation, but at least eight lights
are supported. They are identified by symbolic names of the form GL_LIGHTi where 0 £ i <
GL_MAX_LIGHTS.

pname
A light source parameter for light. The following symbolic names are accepted:
GL_AMBIENT

The params parameter returns four integer or floating-point values representing the ambient
intensity of the light source. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_DIFFUSE
The params parameter returns four integer or floating-point values representing the diffuse
intensity of the light source. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_SPECULAR
The params parameter returns four integer or floating-point values representing the specular
intensity of the light source. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_POSITION
The params parameter returns four integer or floating-point values representing the position of the
light source. Integer values, when requested, are computed by rounding the internal floating-point
values to the nearest integer value. The returned values are those maintained in eye coordinates.
They will not be equal to the values specified using glLight, unless the modelview matrix was
identified at the time glLight was called.

GL_SPOT_DIRECTION
The params parameter returns three integer or floating-point values representing the direction of
the light source. Integer values, when requested, are computed by rounding the internal floating-
point values to the nearest integer value. The returned values are those maintained in eye
coordinates. They will not be equal to the values specified using glLight, unless the modelview

matrix was identified at the time glLight was called. Although spot direction is normalized before
being used in the lighting equation, the returned values are the transformed versions of the
specified values prior to normalization.

GL_SPOT_EXPONENT
The params parameter returns a single integer or floating-point value representing the spot
exponent of the light. An integer value, when requested, is computed by rounding the internal
floating-point representation to the nearest integer.

GL_SPOT_CUTOFF
The params parameter returns a single integer or floating-point value representing the spot cutoff
angle of the light. An integer value, when requested, is computed by rounding the internal floating-
point representation to the nearest integer.

GL_CONSTANT_ATTENUATION
The params parameter returns a single integer or floating-point value representing the constant
(not distance-related) attenuation of the light. An integer value, when requested, is computed by
rounding the internal floating-point representation to the nearest integer.

GL_LINEAR_ATTENUATION
The params parameter returns a single integer or floating-point value representing the linear
attenuation of the light. An integer value, when requested, is computed by rounding the internal
floating-point representation to the nearest integer.

GL_QUADRATIC_ATTENUATION
The params parameter returns a single integer or floating-point value representing the quadratic
attenuation of the light. An integer value, when requested, is computed by rounding the internal
floating-point representation to the nearest integer.

params
Returns the requested data.

Remarks
The glGetLight function returns in params the value or values of a light source parameter. The light
parameter names the light and is a symbolic name of the form GL_LIGHTi for 0 £ i < GL_MAX_LIGHTS,
where GL_MAX_LIGHTS is an implementation-dependent constant that is greater than or equal to eight.
The pname parameter specifies one of ten light source parameters, again by symbolic name.

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

If an error is generated, no change is made to the contents of params.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM light or pname was not an accepted

value.
GL_INVALID_OPERATION glGetLight was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glLight

glGetMapdv, glGetMapfv, glGetMapiv
[New - Windows 95, OEM Service Release 2]

These functions return evaluator parameters.

void glGetMapdv(
        GLenum target,
        GLenum query,
        GLdouble * v
     );

void glGetMapfv(
        GLenum target,
        GLenum query,
        GLfloat * v
     );

void glGetMapiv(
        GLenum target,
        GLenum query,
        GLint * v
     );

Parameters
target

The symbolic name of a map. The following are accepted values: GL_MAP1_COLOR_4,
GL_MAP1_INDEX, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1,
GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3,
GL_MAP1_TEXTURE_COORD_4, GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4,
GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1,
GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3,
GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3, and GL_MAP2_VERTEX_4.

query
Specifies which parameter to return. The following symbolic names are accepted:
GL_COEFF

The v parameter returns the control points for the evaluator function. One-dimensional evaluators
return order control points, and two-dimensional evaluators return uorderxvorder control points.
Each control point consists of one, two, three, or four integer, single-precision floating-point, or
double-precision floating-point values, depending on the type of the evaluator. Two-dimensional
control points are returned in row-major order, incrementing the uorder index quickly, and the
vorder index after each row. Integer values, when requested, are computed by rounding the
internal floating-point values to the nearest integer values.

GL_ORDER
The v parameter returns the order of the evaluator function. One-dimensional evaluators return a
single value, order. Two-dimensional evaluators return two values, uorder and vorder.

GL_DOMAIN
The v parameter returns the linear u and v mapping parameters. One-dimensional evaluators
return two values, u1 and u2, as specified by glMap1. Two-dimensional evaluators return four
values (u1, u2, v1, and v2) as specified by glMap2. Integer values, when requested, are computed
by rounding the internal floating-point values to the nearest integer values.

v
Returns the requested data.

Remarks
The glGetMap function returns evaluator parameters. (The glMap1 and glMap2 functions define
evaluators.) The target parameter specifies a map, query selects a specific parameter, and v points to
storage where the values will be returned.

The acceptable values for the target parameter are described in glMap1 and glMap2   

If an error is generated, no change is made to the contents of v.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or query was not an accepted

value.
GL_INVALID_OPERATION glGetMap was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glEvalCoord, glMap1, glMap2

glGetMaterialfv, glGetMaterialiv
[New - Windows 95, OEM Service Release 2]

The glGetMaterialfv and glGetMaterialiv functions return material parameters.

void glGetMaterialfv(
        GLenum face,
        GLenum pname,
        GLfloat * params
     );

void glGetMaterialiv(
        GLenum face,
        GLenum pname,
        GLint * params
     );

Parameters
face

Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are accepted,
representing the front and back materials, respectively.

pname
The material parameter to return. The following values are accepted:
GL_AMBIENT

The params parameter returns four integer or floating-point values representing the ambient
reflectance of the material. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_DIFFUSE
The params parameter returns four integer or floating-point values representing the diffuse
reflectance of the material. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_SPECULAR
The params parameter returns four integer or floating-point values representing the specular
reflectance of the material. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_EMISSION
The params parameter returns four integer or floating-point values representing the emitted light
intensity of the material. Integer values, when requested, are linearly mapped from the internal
floating-point representation such that 1.0 maps to the most positive representable integer value,
and -1.0 maps to the most negative representable integer value. If the internal value is outside the
range [-1,1], the corresponding integer return value is undefined.

GL_SHININESS
The params parameter returns one integer or floating-point value representing the specular
exponent of the material. Integer values, when requested, are computed by rounding the internal
floating-point value to the nearest integer value.

GL_COLOR_INDEXES
The params parameter returns three integer or floating-point values representing the ambient,

diffuse, and specular indexes of the material. Use these indexes only for color-index lighting. (The
other parameters are all used only for RGBA lighting.) Integer values, when requested, are
computed by rounding the internal floating-point values to the nearest integer values.

params
Returns the requested data.

Remarks
The glGetMaterial function returns in params the value or values of parameter pname of material face.

If an error is generated, no change is made to the contents of params.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM face or pname was not an

accepted value.
GL_INVALID_OPERATION glGetMaterial was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glMaterial

glGetPixelMapfv, glGetPixelMapuiv,
glGetPixelMapusv

[New - Windows 95, OEM Service Release 2]

These functions return the specified pixel map.

void glGetPixelMapfv(
        GLenum map,
        GLfloat * values
     );

void glGetPixelMapuiv(
        GLenum map,
        GLuint * values
     );

void glGetPixelMapusv(
        GLenum map,
        GLushort * values
     );

Parameters
map

The name of the pixel map to return. Accepted values are GL_PIXEL_MAP_I_TO_I,
GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_PIXEL_MAP_R_TO_R,
GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, and GL_PIXEL_MAP_A_TO_A.

values
Returns the pixel map contents.

Remarks
See glPixelMap for a description of the acceptable values for the map parameter. The glGetPixelMap
function returns in values the contents of the pixel map specified in map. Use pixel maps during the
execution of glReadPixels, glDrawPixels, glCopyPixels, glTexImage1D, and glTexImage2D to map
color indexes, stencil indexes, color components, and depth components to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or floating-point
representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to zero.
Return unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of map, call glGet with the appropriate symbolic constant.

If an error is generated, no change is made to the contents of values.

The following functions retrieve information related to glGetPixelMap:

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE

glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM map was not an accepted value.
GL_INVALID_OPERATION glGetPixelMap was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glCopyPixels, glDrawPixels, glEnd, glGet, glPixelMap, glPixelTransfer, glReadPixels,
glTexImage1D, glTexImage2D

glGetPointerv
[New - Windows 95, OEM Service Release 2]

The glGetPointerv function returns the address of a vertex data array.

void glGetPointerv(
        GLenum pname,
        GLvoid * * params
     );

Parameters
pname

The type of array pointer to return from the following symbolic constants:
GL_VERTEX_ARRAY_POINTER, GL_NORMAL_ARRAY_POINTER,
GL_COLOR_ARRAY_POINTER, GL_INDEX_ARRAY_POINTER,
GL_TEXTURE_COORD_ARRAY_POINTER, and GL_EDGE_FLAG_ARRAY_POINTER.

params
Returns the value of the array pointer specified by pname.

Remarks
The glGetPointerv function returns array pointer information. The pname parameter is a symbolic
constant specifying the kind of array pointer to return, and params is a pointer to a location to place the
returned data.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.

See Also
glArrayElement, glColorPointer, glDrawArrays, glEdgeFlagPointer, glGetString, glIndexPointer,
glNormalPointer, glTexCoordPointer, glVertexPointer

glGetPolygonStipple   

[New - Windows 95, OEM Service Release 2]

The glGetPolygonStipple function returns the polygon stipple pattern.

void glGetPolygonStipple(
        GLubyte * mask
     );

Parameters
mask

Returns the stipple pattern.

Remarks
The glGetPolygonStipple function returns to mask a 32x32 polygon stipple pattern. The pattern is
packed into memory as if glReadPixels with both height and width of 32, type of GL_BITMAP, and format
of GL_COLOR_INDEX were called, and the stipple pattern were stored in an internal 32x32 color-index
buffer. Unlike glReadPixels, however, pixel-transfer operations (shift, offset, and pixel map) are not
applied to the returned stipple image.

If an error is generated, no change is made to the contents of mask.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glGetPolygonStipple was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glPixelStore, glPixelTransfer, glPolygonStipple, glReadPixels

glGetString   

[New - Windows 95, OEM Service Release 2]

The glGetString function returns a string describing the current OpenGL connection.

const GLubyte * glGetString(
        GLenum name
     );

Parameters
name

One of the following symbolic constants:
GL_VENDOR

Returns the company responsible for this OpenGL implementation. This name does not change
from release to release.

GL_RENDERER
Returns the name of the renderer. This name is typically specific to a particular configuration of a
hardware platform. It does not change from release to release.

GL_VERSION
Returns a version or release number.

GL_EXTENSIONS
Returns a space-separated list of supported extensions to OpenGL.

Remarks
The glGetString function returns a pointer to a static string describing some aspect of the current
OpenGL connection.

Because OpenGL does not include queries for the performance characteristics of an implementation, it is
expected that some applications will be written to recognize known platforms and will modify their
OpenGL usage based on known performance characteristics of these platforms. The strings
GL_VENDOR and GL_RENDERER together uniquely specify a platform, and will not change from
release to release. They should be used by such platform recognition algorithms.

The format and contents of the string that glGetString returns depend on the implementation, except
that:

· Extension names will not include space characters and will be separated by space characters in the
GL_EXTENSIONS string.

· All strings are null-terminated.

If an error is generated, glGetString returns zero.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM name was not an accepted value.
GL_INVALID_OPERATION glGetString was called between a

call to glBegin and the corresponding
call to glEnd.

See Also

glBegin, glEnd

glGetTexEnvfv   

[New - Windows 95, OEM Service Release 2]

The glGetTexEnvfv and glGetTexEnviv functions return texture environment parameters.

void glGetTexEnvfv(
        GLenum target,
        GLenum pname,
        GLfloat * params
     );

void glGetTexEnviv(
        GLenum target,
        GLenum pname,
        GLint * params
     );

Parameters
target

A texture environment. Must be GL_TEXTURE_ENV.
pname

The symbolic name of a texture environment parameter. The following values are accepted:
GL_TEXTURE_ENV_MODE

The params parameter returns the single-valued texture environment mode, a symbolic constant.
GL_TEXTURE_ENV_COLOR

The params parameter returns four integer or floating-point values that are the texture environment
color. Integer values, when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable integer, and -1.0 maps to the
most negative representable integer.

params
Returns the requested data.

Remarks
The glGetTexEnv function returns in params selected values of a texture environment that was specified
with glTexEnv. The target parameter specifies a texture environment. Currently, only one texture
environment is defined and supported: GL_TEXTURE_ENV.

The pname parameter names a specific texture environment parameter.

If an error is generated, no change is made to the contents of params.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or pname was not an accepted

value.
GL_INVALID_OPERATION glGetTexEnv was called between a

call to glBegin and the corresponding
call to glEnd.

See Also

glBegin, glEnd, glTexEnv

glGetTexGendv, glGetTexGenfv,
glGetTexGeniv

[New - Windows 95, OEM Service Release 2]

These functions return texture coordinate generation parameters.

void glGetTexGendv(
        GLenum coord,
        GLenum pname,
        GLdouble * params
     );

void glGetTexGenfv(
        GLenum coord,
        GLenum pname,
        GLfloat * params
     );

void glGetTexGeniv(
        GLenum coord,
        GLenum pname,
        GLint * params
     );

Parameters
coord

A texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.
pname

The symbolic name of the value(s) to be returned. Must be either GL_TEXTURE_GEN_MODE or the
name of one of the texture generation plane equations: GL_OBJECT_PLANE or GL_EYE_PLANE.
These values are as follows:
GL_TEXTURE_GEN_MODE

The params parameter returns the single-valued texture-generation function, a symbolic constant.
GL_OBJECT_PLANE

The params parameter returns the four plane equation coefficients that specify object linear-
coordinate generation. Integer values, when requested, are mapped directly from the internal
floating-point representation.

GL_EYE_PLANE
The params parameter returns the four plane equation coefficients that specify eye linear-
coordinate generation. Integer values, when requested, are mapped directly from the internal
floating-point representation. The returned values are those maintained in eye coordinates. They
are not equal to the values specified using glTexGen, unless the modelview matrix was identified
at the time glTexGen was called.

params
Returns the requested data.

Remarks
The glGetTexGen function returns in params selected parameters of a texture-coordinate generation
function that you specified with glTexGen. The coord parameter names one of the (s,t,r,q) texture
coordinates, using the symbolic constant GL_S, GL_T, GL_R, or GL_Q.

If an error is generated, no change is made to the contents of params.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM coord or pname was not an accepted

value.
GL_INVALID_OPERATION glGetTexGen was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glTexGen

glGetTexImage   

[New - Windows 95, OEM Service Release 2]

The glGetTexImage function returns a texture image.

void glGetTexImage(
        GLenum target,
        GLint level,
        GLenum format,
        GLenum type,
        GLvoid * pixels
     );

Parameters
target

Specifies which texture is to be obtained. GL_TEXTURE_1D and GL_TEXTURE_2D are accepted.
level

The level-of-detail number of the desired image. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

format
A pixel format for the returned data. The supported formats are GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, GL_BGR_EXT, GL_BGRA_EXT, and
GL_LUMINANCE_ALPHA.

type
A pixel type for the returned data. The supported types are GL_UNSIGNED_BYTE, GL_BYTE,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels
Returns the texture image. Should be a pointer to an array of the type specified by type.

Remarks
The glGetTexImage function returns a texture image into pixels. The target parameter specifies whether
the desired texture image is one specified by glTexImage1D(GL_TEXTURE_1D) or by
glTexImage2D(GL_TEXTURE_2D). The level parameter specifies the level-of-detail number of the
desired image. The format and type parameters specify the format and type of the desired image array.
For a description of the acceptable values for the format and type parameters, respectively, see
glTexImage1D and glDrawPixels.

Operation of glGetTexImage is best understood by considering the selected internal four-component
texture image to be an RGBA color buffer the size of the image. The semantics of glGetTexImage are
then identical to those of glReadPixels called with the same format and type, with x and y set to zero,
width set to the width of the texture image (including border if one was specified), and height set to one
for 1-D images, or to the height of the texture image (including border, if one was specified) for 2-D
images.

Because the internal texture image is an RGBA image, pixel formats GL_COLOR_INDEX,
GL_STENCIL_INDEX, and GL_DEPTH_COMPONENT are not accepted, and pixel type GL_BITMAP is
not accepted.

If the selected texture image does not contain four components, the following mappings are applied.
Single-component textures are treated as RGBA buffers with red set to the single-component value, and
green, blue, and alpha set to zero.

Two-component textures are treated as RGBA buffers, with red set to the value of component zero, alpha

set to the value of component one, and green and blue set to zero. Finally, three-component textures are
treated as RGBA buffers with red set to component zero, green set to component one, blue set to
component two, and alpha set to zero.

To determine the required size of pixels, use glGetTexLevelParameter to ascertain the dimensions of the
internal texture image, and then scale the required number of pixels by the storage required for each
pixel, based on format and type. Be sure to take the pixel-storage parameters into account, especially
GL_PACK_ALIGNMENT.

If an error is generated, no change is made to the contents of pixels.

The following functions retrieve information related to glGetTexImage:

glGetTexLevelParameter with argument GL_TEXTURE_WIDTH
glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT
glGetTexLevelParameter with argument GL_TEXTURE_BORDER
glGetTexLevelParameter with argument GL_TEXTURE_COMPONENTS
glGet with argument GL_PACK_ALIGNMENT and others

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target, format, or type was not an

accepted value.
GL_INVALID_VALUE level is less than zero or greater than

log (2) max, where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION glGetTexImage was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glDrawPixels, glEnd, glGetTexLevelParameter, glReadPixels, glTexImage1D,
glTexImage2D

glGetTexLevelParameterfv,
glGetTexLevelParameteriv

[New - Windows 95, OEM Service Release 2]

The glGetTexLevelParameterfv and glGetTexLevelParameteriv functions return texture parameter
values for a specific level of detail.

void glGetTexLevelParameterfv(
        GLenum target,
        GLint level,
        GLenum pname,
        GLfloat * params
     );

void glGetTexLevelParameteriv(
        GLenum target,
        GLint level,
        GLenum pname,
        GLint * params
     );

Parameters
target

The symbolic name of the target texture: either GL_TEXTURE_1D or GL_TEXTURE_2D.
level

The level-of-detail number of the desired image. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

pname
The symbolic name of a texture parameter. The following parameter names are accepted:
GL_TEXTURE_WIDTH

The params parameter returns a single value: the width of the texture image. This value includes
the border of the texture image.

GL_TEXTURE_HEIGHT
The params parameter returns a single value: the height of the texture image. This value includes
the border of the texture image.

GL_TEXTURE_COMPONENTS
The params parameter returns a single value: the number of components in the texture image.

GL_TEXTURE_BORDER
The params parameter returns a single value: the width in pixels of the border of the texture image.

params
Returns the requested data.

Remarks
The glGetTexLevelParameter function returns in params texture parameter values for a specific level-of-
detail value, specified as level. The target parameter defines the target texture¾either GL_TEXTURE_1D
or GL_TEXTURE_2D¾to specify one- or two-dimensional texturing. The pname parameter specifies the
texture parameter whose value or values will be returned.

If an error is generated, no change is made to the contents of params.

Error Codes

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or pname was not an accepted

value.
GL_INVALID_VALUE level is less than zero or greater than

log (2) max, where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION glGetTexLevelParameter was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glGetTexParameter, glTexImage1D, glTexImage2D, glTexParameter

glGetTexParameterfv,
glGetTexParameteriv

[New - Windows 95, OEM Service Release 2]

The glGetTexParameterfv and glGetTexParameteriv functions return texture parameter values.

void glGetTexParameterfv(
        GLenum target,
        GLenum pname,
        GLfloat * params
     );

void glGetTexParameteriv(
        GLenum target,
        GLenum pname,
        GLint * params
     );

Parameters
target

The symbolic name of the target texture. GL_TEXTURE_1D and GL_TEXTURE_2D are accepted.
pname

The symbolic name of a texture parameter. The following values are accepted:
GL_TEXTURE_MAG_FILTER

Returns the single-valued texture magnification filter, a symbolic constant.
GL_TEXTURE_MIN_FILTER

Returns the single-valued texture minification filter, a symbolic constant.
GL_TEXTURE_WRAP_S

Returns the single-valued wrapping function for texture coordinate s, a symbolic constant.
GL_TEXTURE_WRAP_T

Returns the single-valued wrapping function for texture coordinate t, a symbolic constant.
GL_TEXTURE_BORDER_COLOR

Returns four integer or floating-point numbers that comprise the RGBA color of the texture border.
Floating-point values are returned in the range [0,1]. Integer values are returned as a linear
mapping of the internal floating-point representation such that 1.0 maps to the most positive
representable integer and -1.0 maps to the most negative representable integer.

params
Returns the texture parameters.

Remarks
The glGetTexParameter function returns in params the value or values of the texture parameter specified
as pname. The target parameter defines the target texture¾either GL_TEXTURE_1D or
GL_TEXTURE_2D¾to specify one- or two-dimensional texturing. The pname parameter accepts the
same symbols as glTexParameter, with the same interpretations.

If an error is generated, no change is made to the contents of params.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition

GL_INVALID_ENUM target or pname was not an accepted
value.

GL_INVALID_OPERATION glGetTexParameter was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glTexParameter

glHint   

[New - Windows 95, OEM Service Release 2]

The glHint function specifies implementation-specific hints.

void glHint(
        GLenum target,
        GLenum mode
     );

Parameters
target

A symbolic constant indicating the behavior to be controlled. The following symbolic constants, along
with suggested semantics, are accepted:
GL_FOG_HINT

Indicates the accuracy of fog calculation. If per-pixel fog calculation is not efficiently supported by
the OpenGL implementation, hinting GL_DONT_CARE or GL_FASTEST can result in per-vertex
calculation of fog effects.

GL_LINE_SMOOTH_HINT
Indicates the sampling quality of antialiased lines. Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a larger filter function is applied.

GL_PERSPECTIVE_CORRECTION_HINT
Indicates the quality of color and texture coordinate interpolation. If perspective-corrected
parameter interpolation is not efficiently supported by the OpenGL implementation, hinting
GL_DONT_CARE or GL_FASTEST can result in simple linear interpolation of colors and/or texture
coordinates.

GL_POINT_SMOOTH_HINT
Indicates the sampling quality of antialiased points. Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a larger filter function is applied.

GL_POLYGON_SMOOTH_HINT
Indicates the sampling quality of antialiased polygons. Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a larger filter function is applied.

mode
A symbolic constant indicating the desired behavior. The following symbolic constants are accepted:
GL_FASTEST

The most efficient option should be chosen.
GL_NICEST

The most correct, or highest quality, option should be chosen.
GL_DONT_CARE

The client doesn't have a preference.

Remarks
When there is room for interpretation, you can control certain aspects of OpenGL behavior with hints. You
specify a hint with two arguments. The target parameter is a symbolic constant indicating the behavior to
be controlled, and mode is another symbolic constant indicating the desired behavior.

Though the implementation aspects that can be hinted are well defined, the interpretation of the hints
depends on the implementation.

The glHint function can be ignored.

Error Codes

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or mode was not an accepted

value.
GL_INVALID_OPERATION glHint was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd

glIndex
[New - Windows 95, OEM Service Release 2]

glIndexd, glIndexf, glIndexi, glIndexs, glIndexdv, glIndexfv, glIndexiv, glIndexsv

These functions set the current color index.

void glIndexd(
        GLdouble c
     );

void glIndexf(
        GLfloat c
     );

void glIndexi(
        GLint c
     );

void glIndexs(
        GLshort c
     );

Parameters
c

The new value for the current color index.

void glIndexdv(
        const GLdouble *c
     );

void glIndexfv(
        const GLfloat *c
     );

void glIndexiv(
        const GLint *c
     );

void glIndexsv(
        const GLshort *c
     );

Parameters
c

A pointer to a one-element array that contains the new value for the current color index.

Remarks
The glIndex function updates the current (single-valued) color index. It takes one argument: the new
value for the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to floating-point
values, with no special mapping.

Index values outside the representable range of the color-index buffer are not clamped. However, before
an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point format. Any

bits in the integer portion of the resulting fixed-point value that do not correspond to bits in the frame
buffer are masked out.

The current index can be updated at any time. In particular, glIndex can be called between a call to
glBegin and the corresponding call to glEnd.

The following function retrieves information related to glIndex:

glGet with argument GL_CURRENT_INDEX

See Also
glBegin, glColor, glEnd, glGet

glIndexMask   

[New - Windows 95, OEM Service Release 2]

The glIndexMask function controls the writing of individual bits in the color-index buffers.

void glIndexMask(
        GLuint mask
     );

Parameters
mask

A bit mask to enable and disable the writing of individual bits in the color-index buffers. Initially, the
mask is all ones.

Remarks
The glIndexMask function controls the writing of individual bits in the color-index buffers. The least
significant n bits of mask, where n is the number of bits in a color-index buffer, specify a mask. Wherever
a one appears in the mask, the corresponding bit in the color-index buffer (or buffers) is made writable.
Where a zero appears, the bit is write-protected.

This mask is used only in color-index mode, and it affects only the buffers currently selected for writing
(see glDrawBuffer). Initially, all bits are enabled for writing.

The following function retrieves information related to glIndexMask:

glGet with argument GL_INDEX_WRITEMASK

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glIndexMask was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glDepthMask, glDrawBuffer, glEnd, glIndex, glStencilMask

glIndexPointer
[New - Windows 95, OEM Service Release 2]

The glIndexPointer function defines an array of color indexes.

void glIndexPointer(
        GLenum type,
        GLsizei stride,
        GLsizei count,
        const GLvoid *pointer
     );

Parameters
type

The data type of each color index in the array using the following symbolic constants: GL_SHORT,
GL_INT, GL_FLOAT, GL_DOUBLE.

stride
The byte offset between consecutive color indexes. When stride is zero, the color indexes are tightly
packed in the array.

count
The number of color indexes, counting from the first, that are static.

pointer
A pointer to the first color index in the array.

Remarks
The glIndexPointer function specifies the location and data of an array of color indexes to use when
rendering. The type parameter specifies the data type of each color index and stride determines the byte
offset from one color index to the next, enabling the packing of vertices and attributes in a single array or
storage in separate arrays. In some implementations storing the vertices and attributes in a single array
can be more efficient than using separate arrays. Starting from the first color-index element, count
indicates the total number of static elements. Your application can modify static elements, but once the
elements are modified, the application must explicitly specify the array again before using the array for
any rendering. Non-static array elements are not accessed until you call glDrawArrays or
glArrayElement.

A color-index array is enabled when you specify the GL_INDEX_ARRAY constant with
glEnableClientState. When enabled, glDrawArrays and glArrayElement use the color-index array. By
default the color-index array is disabled.

You cannot include glIndexPointer in display lists.

When you specify a color-index array using glIndexPointer, the values of all the function's color-index
array parameters are saved in a client-side state and static array elements can be cached. Because the
color-index array parameters are client-side state, their values are not saved or restored by glPushAttrib
and glPopAttrib.

Although no error is generated when you call glIndexPointer within glBegin and glEnd pairs, the results
are undefined.

The following functions retrieve information related to glIndexPointer:

glIsEnabled with argument GL_INDEX_ARRAY
glGet with argument GL_INDEX_ARRAY_STRIDE
glGet with argument GL_INDEX_ARRAY_COUNT

glGet with argument GL_INDEX_ARRAY_TYPE
glGet with argument GL_INDEX_ARRAY_SIZE
glGetPointerv with argument GL_INDEX_ARRAY_POINTER

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE stride or count was negative.

See Also
glArrayElement, glColorPointer, glDrawArrays, glEdgeFlagPointer, glGetPointerv, glGetString,
glNormalPointer, glPushAttrib, glTexCoordPointer, glVertexPointer

glInitNames   

[New - Windows 95, OEM Service Release 2]

The glInitNames function initializes the name stack.

void glInitNames(
        void
     );

Remarks
The glInitNames function causes the name stack to be initialized to its default empty state. The name
stack is used during selection mode to allow sets of rendering commands to be uniquely identified. It
consists of an ordered set of unsigned integers.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glInitNames while
the render mode is not GL_SELECT are ignored.

The following functions retrieve information related to glInitNames:

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glInitNames was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLoadName, glPushName, glRenderMode, glSelectBuffer

glInterleavedArrays
[New - Windows 95, OEM Service Release 2]

The glInterleavedArrays function simultaneously specifies and enables several interleaved arrays in a
larger aggregate array.

void glInterleavedArrays(
        GLenum format,
        GLsizei stride,
        const GLvoid * pointer
     );

Parameters
format

The type of array to enable. The parameter can assume one of the following symbolic values:
GL_V2F, GL_V3F, GL_C4UB_V2F, GL_C4UB_V3F, GL_C3F_V3F, GL_N3F_V3F,
GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F, GL_T2F_C4UB_V3F, GL_T2F_C3F_V3F,
GL_T2F_N3F_V3F, GL_T2F_C4F_N3F_V3F, or GL_T4F_C4F_N3F_V4F.

stride
The offset in bytes between each aggregate array element.

pointer
A pointer to the first element of an aggregate array.

Remarks
With the glInterleavedArrays function you can simultaneously specify and enable several interleaved
color, normal, texture, and vertex arrays whose elements are part of a larger aggregate array element.
For some memory architectures this is more efficient than specifying the arrays separately.

If the stride parameter is zero then the aggregate array elements are stored consecutively; otherwise
stride bytes occur between aggregate array elements.

The format parameter serves as a "key" that describes how to extract individual arrays from the
aggregate array:

· If format contains a T, then texture coordinates are extracted from the interleaved array.
· If C is present, color values are extracted.
· If N is present, normal coordinates are extracted.
· Vertex coordinates are always extracted.
· The digits 2, 3, and 4 denote how many values are extracted.
· F indicates that values are extracted as floating point values.
· If 4UB follows the C, colors may also be extracted as 4 unsigned bytes. If a color is extracted as 4

unsigned bytes the vertex array element that follows is located at the first possible floating point
aligned address.

If you call glInterleavedArrays while compiling a display list, it is not compiled into the list but is executed
immediately.

You cannot include calls to glInterleavedArrays in glDisableClientState between calls to glBegin and
the corresponding call to glEnd.

Note    The glInterleavedArrays function is only available in OpenGL version 1.1 or later.

The glInterleavedArrays function is implemented on the client side with no protocol. Because the
vertex array parameters are client-side state, they are not saved or restored by glPushAttrib and
glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM format was not an accepted value.
GL_INVALID_VALUE stride was a negative value.
GL_INVALID_OPERATION glInterleavedArrays was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glArrayElement, glColorPointer, glDrawArrays, glDrawElements, glEdgeFlagPointer,
glEnableClientState, glGetPointerv, glIndexPointer, glNormalPointer, glPushAttrib,
glPushClientAttrib, glTexCoordPointer, glVertexPointer

glIsEnabled   

[New - Windows 95, OEM Service Release 2]

The gllsEnabled function tests whether a capability is enabled.

GLboolean glIsEnabled(
        GLenum cap
     );

Parameters
cap

A symbolic constant indicating an OpenGL capability. The following capabilities are accepted:
GL_ALPHA_TEST See glAlphaFunc
GL_AUTO_NORMAL See glEvalCoord
GL_BLEND See glBlendFunc
GL_CLIP_PLANEi See glClipPlane
GL_COLOR_MATERIAL See glColorMaterial
GL_CULL_FACE See glCullFace
GL_DEPTH_TEST See glDepthFunc and

glDepthRange
GL_DITHER See glEnable
GL_FOG See glFog
GL_LIGHTi See glLightModel and glLight
GL_LIGHTING See glMaterial, glLightModel,

and glLight
GL_LINE_SMOOTH See glLineWidth
GL_LINE_STIPPLE See glLineStipple
GL_LOGIC_OP See glLogicOp
GL_MAP1_COLOR_4 See glMap1
GL_MAP1_INDEX See glMap1
GL_MAP1_NORMAL See glMap1
GL_MAP1_TEXTURE_COORD_1 See glMap1
GL_MAP1_TEXTURE_COORD_2 See glMap1
GL_MAP1_TEXTURE_COORD_3 See glMap1
GL_MAP1_TEXTURE_COORD_4 See glMap1
GL_MAP1_VERTEX_3 See glMap1
GL_MAP1_VERTEX_4 See glMap1
GL_MAP2_COLOR_4 See glMap2
GL_MAP2_INDEX See glMap2
GL_MAP2_NORMAL See glMap2
GL_MAP2_TEXTURE_COORD_1 See glMap2
GL_MAP2_TEXTURE_COORD_2 See glMap2
GL_MAP2_TEXTURE_COORD_3 See glMap2
GL_MAP2_TEXTURE_COORD_4 See glMap2
GL_MAP2_VERTEX_3 See glMap2
GL_MAP2_VERTEX_4 See glMap2

GL_NORMALIZE See glNormal
GL_POINT_SMOOTH See glPointSize
GL_POLYGON_SMOOTH See glPolygonMode
GL_POLYGON_STIPPLE See glPolygonStipple
GL_SCISSOR_TEST See glScissor
GL_STENCIL_TEST See glStencilFunc and

glStencilOp
GL_TEXTURE_1D See glTexImage1D
GL_TEXTURE_2D See glTexImage2D
GL_TEXTURE_GEN_Q See glTexGen
GL_TEXTURE_GEN_R See glTexGen
GL_TEXTURE_GEN_S See glTexGen
GL_TEXTURE_GEN_T See glTexGen

Remarks
The gllsEnabled function returns GL_TRUE if cap is an enabled capability and returns GL_FALSE
otherwise.

Error Codes
If an error is generated, glIsEnabled returns zero.

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM cap was not an accepted value.
GL_INVALID_OPERATION glIsEnabled was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnable, glEnd

glIsList   

[New - Windows 95, OEM Service Release 2]

The gllsList function tests for display list existence.

GLboolean glIsList(
        GLuint list
     );

Parameters
list

A potential display list name.

Remarks
The gllsList function returns GL_TRUE if list is the name of a display list and returns GL_FALSE
otherwise.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glIsList was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glCallList, glCallLists, glDeleteLists, glEnd, glGenLists, glNewList

glIsTexture
[New - Windows 95, OEM Service Release 2]

The glIsTexture function determines if a name corresponds to a texture.

GLboolean glIsTexture(
        GLuint texture
     );

Parameters
texture

A value that is the name of a texture.

Remarks
If the texture parameter is currently the name of a texture, the glIsTexture function returns GL_TRUE. If
texture is zero, is a non-zero value that is not currently the name of a texture, or if an error occurs,
glIsTexture returns GL_FALSE.

You cannot include calls to glIsTexture in display lists.

Note    The glIsTexture function is only available in OpenGL version 1.1 or later.

Error Codes
The following is the error code generated and its condition.

Error Code Condition
GL_INVALID_OPERATION glIsTexture was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glBindTexture, glEnd, glGenTextures, glGet, glGetTexParameter, glTexImage1D,
glTexImage2D, glTexParameter

glLightf, glLighti, glLightfv, glLightiv
[New - Windows 95, OEM Service Release 2]

These functions set light source parameters.

void glLightf(
        GLenum light,
        GLenum pname,
        GLfloat param
     );

void glLighti(
        GLenum light,
        GLenum pname,
        GLint param
     );

Parameters
light

A light. The number of lights depends on the implementation, but at least eight lights are supported.
They are identified by symbolic names of the form GL_LIGHTi where 0 £ i < GL_MAX_LIGHTS.

pname
A single-valued light source parameter for light. The following values are accepted.
GL_SPOT_EXPONENT

The params parameter is a single integer or floating-point value that specifies the intensity
distribution of the light. Integer and floating-point values are mapped directly. Only values in the
range [0,128] are accepted.
Effective light intensity is attenuated by the cosine of the angle between the direction of the light
and the direction from the light to the vertex being lighted, raised to the power of the spot
exponent. Thus, higher spot exponents result in a more focused light source, regardless of the spot
cutoff angle (see the following paragraph). The default spot exponent is 0, resulting in uniform light
distribution.

GL_SPOT_CUTOFF
The params parameter is a single integer or floating-point value that specifies the maximum spread
angle of a light source. Integer and floating-point values are mapped directly. Only values in the
range [0,90], and the special value 180, are accepted. If the angle between the direction of the light
and the direction from the light to the vertex being lighted is greater than the spot cutoff angle, then
the light is completely masked. Otherwise, its intensity is controlled by the spot exponent and the
attenuation factors. The default spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

The params parameter is a single integer or floating-point value that specifies one of the three light
attenuation factors. Integer and floating-point values are mapped directly. Only nonnegative values
are accepted. If the light is positional, rather than directional, its intensity is attenuated by the
reciprocal of the sum of: the constant factor, the linear factor multiplied by the distance between the
light and the vertex being lighted, and the quadratic factor multiplied by the square of the same
distance. The default attenuation factors are (1,0,0), resulting in no attenuation.

param
The value to which parameter pname of light source light will be set.

void glLightfv(
        GLenum light,

        GLenum pname,
        const GLfloat *params
     );

void glLightiv(
        GLenum light,
        GLenum pname,
        const GLint *params
     );

Parameters
light

A light. The number of lights depends on the implementation, but at least eight lights are supported.
They are identified by symbolic names of the form GL_LIGHTi where 0 £ i < GL_MAX_LIGHTS.

pname
A light source parameter for light. The following values are accepted:
GL_AMBIENT

The params parameter contains four integer or floating-point values that specify the ambient RGBA
intensity of the light. Integer values are mapped linearly such that the most positive representable
value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values
are mapped directly. Neither integer nor floating-point values are clamped. The default ambient
light intensity is (0.0, 0.0, 0.0, 1.0).

GL_DIFFUSE
The params parameter contains four integer or floating-point values that specify the diffuse RGBA
intensity of the light. Integer values are mapped linearly such that the most positive representable
value maps to 1.0, and the most negative representable value maps to -1.0. Floating-point values
are mapped directly. Neither integer nor floating-point values are clamped. The default diffuse
intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default diffuse intensity of light
zero is (1.0, 1.0, 1.0, 1.0).

GL_SPECULAR
The params parameter contains four integer or floating-point values that specify the specular
RGBA intensity of the light. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default specular intensity is (0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default
specular intensity of light zero is (1.0, 1.0, 1.0, 1.0).

GL_POSITION
The params parameter contains four integer or floating-point values that specify the position of the
light in homogeneous object coordinates. Both integer and floating-point values are mapped
directly. Neither integer nor floating-point values are clamped.
The position is transformed by the modelview matrix when glLight is called (just as if it were a
point), and it is stored in eye coordinates. If the w component of the position is 0.0, the light is
treated as a directional source. Diffuse and specular lighting calculations take the lights direction,
but not its actual position, into account, and attenuation is disabled. Otherwise, diffuse and
specular lighting calculations are based on the actual location of the light in eye coordinates, and
attenuation is enabled. The default position is (0,0,1,0); thus, the default light source is directional,
parallel to, and in the direction of the -z axis.

GL_SPOT_DIRECTION
The params parameter contains three integer or floating-point values that specify the direction of
the light in homogeneous object coordinates. Both integer and floating-point values are mapped
directly. Neither integer nor floating-point values are clamped.
The spot direction is transformed by the inverse of the modelview matrix when glLight is called
(just as if it were a normal), and it is stored in eye coordinates. It is significant only when
GL_SPOT_CUTOFF is not 180, which it is by default. The default direction is (0,0,-1).

GL_SPOT_EXPONENT
The params parameter is a single integer or floating-point value that specifies the intensity
distribution of the light. Integer and floating-point values are mapped directly. Only values in the
range [0,128] are accepted.
Effective light intensity is attenuated by the cosine of the angle between the direction of the light
and the direction from the light to the vertex being lighted, raised to the power of the spot
exponent. Thus, higher spot exponents result in a more focused light source, regardless of the spot
cutoff angle (see the following paragraph). The default spot exponent is 0, resulting in uniform light
distribution.

GL_SPOT_CUTOFF
The params parameter is a single integer or floating-point value that specifies the maximum spread
angle of a light source. Integer and floating-point values are mapped directly. Only values in the
range [0,90], and the special value 180, are accepted. If the angle between the direction of the light
and the direction from the light to the vertex being lighted is greater than the spot cutoff angle, then
the light is completely masked. Otherwise, its intensity is controlled by the spot exponent and the
attenuation factors. The default spot cutoff is 180, resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

The params parameter is a single integer or floating-point value that specifies one of the three light
attenuation factors. Integer and floating-point values are mapped directly. Only nonnegative values
are accepted. If the light is positional, rather than directional, its intensity is attenuated by the
reciprocal of the sum of: the constant factor, the linear factor multiplied by the distance between the
light and the vertex being lighted, and the quadratic factor multiplied by the square of the same
distance. The default attenuation factors are (1,0,0), resulting in no attenuation.

params
A pointer to the value or values to which parameter pname of light source light will be set.

Remarks
The glLight function sets the values of individual light source parameters. The light parameter names the
light and is a symbolic name of the form:

GL_LIGHTi, where 0 £ i < GL_MAX_LIGHTS

The pname parameter specifies one of ten light source parameters, again by symbolic name. The params
parameter is either a single value or a pointer to an array that contains the new values.

Lighting calculation is enabled and disabled using glEnable and glDisable with argument GL_LIGHTING.
When lighting is enabled, light sources that are enabled contribute to the lighting calculation. Light source
i is enabled and disabled using glEnable and glDisable with argument GL_LIGHTi.

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

The following functions retrieve information related to the glLight function:

glGetLight
glIsEnabled with argument GL_LIGHTING

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM light or pname was not an accepted

value.

GL_INVALID_VALUE a spot exponent value was specified
outside the range [0,128], or if spot
cutoff was specified outside the range
[0,90] (except for the special value
180), or if a negative attenuation
factor was specified.

GL_INVALID_OPERATION glLight was called between a call to
glBegin and the corresponding call to
glEnd.

See Also
glBegin, glColorMaterial, glEnd, glLightModel, glMaterial

glLightModelf, glLightModeli,
glLightModelfv, glLightModeliv

[New - Windows 95, OEM Service Release 2]

These functions set the lighting model parameters.

void glLightModelf(
        GLenum pname,
        GLfloat param
     );

void glLightModeli(
        GLenum pname,
        GLint param
     );

Parameters
pname

A single-valued lighting model parameter. The following values are accepted:
GL_LIGHT_MODEL_LOCAL_VIEWER

The params parameter is a single integer or floating-point value that specifies how specular
reflection angles are computed. If params is 0 (or 0.0), specular reflection angles take the view
direction to be parallel to and in the direction of the -z axis, regardless of the location of the vertex
in eye coordinates. Otherwise specular reflections are computed from the origin of the eye
coordinate system. The default is 0.

GL_LIGHT_MODEL_TWO_SIDE
The params parameter is a single integer or floating-point value that specifies whether one- or two-
sided lighting calculations are done for polygons. It has no effect on the lighting calculations for
points, lines, or bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and only the front
material parameters are used in the lighting equation. Otherwise, two-sided lighting is specified. In
this case, vertices of back-facing polygons are lighted using the back material parameters, and
have their normals reversed before the lighting equation is evaluated. Vertices of front-facing
polygons are always lighted using the front material parameters, with no change to their normals.
The default is 0.

param
The value to which param will be set.

void glLightModelfv(
        GLenum pname,
        const GLfloat *params
     );

void glLightModeliv(
        GLenum pname,
        const GLint *params
     );

Parameters
pname

A lighting model parameter. The following values are accepted:
GL_LIGHT_MODEL_AMBIENT

The params parameter contains four integer or floating-point values that specify the ambient RGBA
intensity of the entire scene. Integer values are mapped linearly such that the most positive

representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default ambient scene intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_LOCAL_VIEWER
The params parameter is a single integer or floating-point value that specifies how specular
reflection angles are computed. If params is 0 (or 0.0), specular reflection angles take the view
direction to be parallel to and in the direction of the -z axis, regardless of the location of the vertex
in eye coordinates. Otherwise specular reflections are computed from the origin of the eye
coordinate system. The default is 0.

GL_LIGHT_MODEL_TWO_SIDE
The params parameter is a single integer or floating-point value that specifies whether one- or two-
sided lighting calculations are done for polygons. It has no effect on the lighting calculations for
points, lines, or bitmaps. If params is 0 (or 0.0), one-sided lighting is specified, and only the front
material parameters are used in the lighting equation. Otherwise, two-sided lighting is specified. In
this case, vertices of back-facing polygons are lighted using the back material parameters, and
have their normals reversed before the lighting equation is evaluated. Vertices of front-facing
polygons are always lighted using the front material parameters, with no change to their normals.
The default is 0.

params
A pointer to the value or values to which params will be set.

Remarks
The glLightModel function sets the lighting model parameter. The pname parameter names a parameter
and params gives the new value.

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the product of
the material ambient reflectance and the lighting model full-scene ambient intensity, and the contribution
of each enabled light source. Each light source contributes the sum of three terms: ambient, diffuse, and
specular. The ambient light source contribution is the product of the material ambient reflectance and the
light's ambient intensity. The diffuse light source contribution is the product of the material diffuse
reflectance, the light's diffuse intensity, and the dot product of the vertex's normal with the normalized
vector from the vertex to the light source. The specular light source contribution is the product of the
material specular reflectance, the light's specular intensity, and the dot product of the normalized vertex-
to-eye and vertex-to-light vectors, raised to the power of the shininess of the material. All three light
source contributions are attenuated equally based on the distance from the vertex to the light source and
on light source direction, spread exponent, and spread cutoff angle. All dot products are replaced with
zero if they evaluate to a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse
reflectance.

In color-index mode, the value of the lighted index of a vertex ranges from the ambient to the specular
values passed to glMaterial using GL_COLOR_INDEXES. Diffuse and specular coefficients, computed
with a (.30, .59, .11) weighting of the light's colors, the shininess of the material, and the same reflection
and attenuation equations as in the RGBA case, determine how much above ambient the resulting index
is.

The following functions retrieve information related to glLightModel:

glGet with argument GL_LIGHT_MODEL_AMBIENT
glGet with argument GL_LIGHT_MODEL_LOCAL_VIEWER
glGet with argument GL_LIGHT_MODEL_TWO_SIDE
glIsEnabled with argument GL_LIGHTING

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.
GL_INVALID_OPERATION glLightModel was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLight, glMaterial

glLineStipple   

[New - Windows 95, OEM Service Release 2]

The glLineStipple function specifies the line stipple pattern.

void glLineStipple(
        GLint factor,
        GLushort pattern
     );

Parameters
factor

A multiplier for each bit in the line stipple pattern. If factor is 3, for example, each bit in the pattern will
be used three times before the next bit in the pattern is used. The factor parameter is clamped to the
range [1, 256] and defaults to one.

pattern
A 16-bit integer whose bit pattern determines which fragments of a line will be drawn when the line is
rasterized. Bit zero is used first, and the default pattern is all ones.

Remarks
The glLineStipple function specifies the line stipple pattern. Line stippling masks out certain fragments
produced by rasterization; those fragments will not be drawn. The masking is achieved by using three
parameters: the 16-bit line stipple pattern pattern, the repeat count factor, and an integer stipple counter
s.

Counter s is reset to zero whenever glBegin is called, and before each line segment of a
glBegin(GL_LINES)/glEnd sequence is generated. It is incremented after each fragment of a unit width
aliased line segment is generated, or after each i fragments of an i width line segment are generated. The
i fragments associated with count s are masked out if pattern bit (s factor) mod 16 is zero, otherwise
these fragments are sent to the frame buffer. Bit zero of pattern is the least significant bit.

Antialiased lines are treated as a sequence of 1xwidth rectangles for purposes of stippling. Rectangle s is
rasterized or not based on the fragment rule described for aliased lines; it counts rectangles rather than
groups of fragments.

Line stippling is enabled or disabled using glEnable and glDisable with argument GL_LINE_STIPPLE.
When enabled, the line stipple pattern is applied as described above. When disabled, it is as if the pattern
were all ones. Initially, line stippling is disabled.

The following functions retrieve information related to glLineStipple:

glGet with argument GL_LINE_STIPPLE_PATTERN
glGet with argument GL_LINE_STIPPLE_REPEAT
glIsEnabled with argument GL_LINE_STIPPLE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glLineStipple was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLineWidth, glPolygonStipple

glLineWidth   

[New - Windows 95, OEM Service Release 2]

The glLineWidth function specifies the width of rasterized lines.

void glLineWidth(
        GLfloat width
     );

Parameters
width

The width of rasterized lines. The default is 1.0.

Remarks
The glLineWidth function specifies the rasterized width of both aliased and antialiased lines. Using a line
width other than 1.0 has different effects, depending on whether line antialiasing is enabled. Line
antialiasing is controlled by calling glEnable and glDisable with argument GL_LINE_SMOOTH.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the nearest
integer. (If the rounding results in the value 0, it is as if the line width were 1.) If | D x | ³ | D y |, i pixels
are filled in each column that is rasterized, where i is the rounded value of width. Otherwise, i pixels are
filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersects the
region lying within the rectangle having width equal to the current line width, length equal to the actual
length of the line, and centered on the mathematical line segment. The coverage value for each fragment
is the window coordinate area of the intersection of the rectangular region with the corresponding pixel
square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is requested,
the nearest supported width is used. Only width 1.0 is guaranteed to be supported; others depend on the
implementation. The range of supported widths and the size difference between supported widths within
the range can be queried by calling glGet with arguments GL_LINE_WIDTH_RANGE and
GL_LINE_WIDTH_GRANULARITY.

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is queried. Clamping
and rounding for aliased and antialiased lines have no effect on the specified value.

Non-antialiased line width may be clamped to an implementation-dependent maximum. Although this
maximum cannot be queried, it must be no less than the maximum value for antialiased lines, rounded to
the nearest integer value.

The following functions retrieve information related to glLineWidth:

glGet with argument GL_LINE_WIDTH
glGet with argument GL_LINE_WIDTH_RANGE
glGet with argument GL_LINE_WIDTH_GRANULARITY
glIsEnabled with argument GL_LINE_SMOOTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE width was less than or equal to zero.

GL_INVALID_OPERATION glLineWidth was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnable, glEnd, glIsEnabled

glListBase   

[New - Windows 95, OEM Service Release 2]

The glListBase function sets the display list base for glCallLists.

void glListBase(
        GLuint base
     );

Parameters
base

An integer offset that will be added to glCallLists offsets to generate display list names. Initial value is
zero.

Remarks
The glListBase function specifies an array of offsets. Display list names are generated by adding base to
each offset. Names that reference valid display lists are executed; others are ignored.

The following function retrieves information related to glListBase:

glGet with argument GL_LIST_BASE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glListBase was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glCallLists, glEnd

glLoadIdentity   

[New - Windows 95, OEM Service Release 2]

The glLoadIdentity function replaces the current matrix with the identity matrix.

void glLoadIdentity(
        void
     );

Remarks
The glLoadIdentity function replaces the current matrix with the identity matrix. It is semantically
equivalent to calling glLoadMatrix with the identity matrix

{ewc msdncd, EWGraphic, bsd23545 0 /a "SDK.BMP"}

but in some cases it is more efficient.

The following functions retrieve information related to glLoadIdentity:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glLoadIdentity was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLoadMatrix, glMatrixMode, glMultMatrix, glPushMatrix

glLoadMatrixd, glLoadMatrixf
[New - Windows 95, OEM Service Release 2]

The glLoadMatrixd and glLoadMatrixf functions replace the current matrix with an arbitrary matrix.

void glLoadMatrixd(
        const GLdouble *m
     );

void glLoadMatrixf(
        const GLfloat *m
     );

Parameters
m

A pointer to a 4x4 matrix stored in column-major order as 16 consecutive values.

Remarks
The glLoadMatrix function replaces the current matrix with the one specified in m. The current matrix is
the projection matrix, modelview matrix, or texture matrix, determined by the current matrix mode (see
glMatrixMode).

The m parameter points to a 4x4 matrix of single- or double-precision floating-point values stored in
column-major order. That is, the matrix is stored as follows:

{ewc msdncd, EWGraphic, bsd23545 1 /a "SDK.WMF"}

The following functions retrieve information related to glLoadMatrix:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glLoadMatrix was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLoadIdentity, glMatrixMode, glMultMatrix, glPushMatrix

glLoadName   

[New - Windows 95, OEM Service Release 2]

The glLoadName function loads a name onto the name stack.

void glLoadName(
        GLuint name
     );

Parameters
name

A name that will replace the top value on the name stack.

Remarks
The glLoadName function causes name to replace the value on the top of the name stack, which is
initially empty. The name stack is used during selection mode to allow sets of rendering commands to be
uniquely identified. It consists of an ordered set of unsigned integers.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName while
the render mode is not GL_SELECT are ignored.

The following functions retrieve information related to glLoadName:

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glLoadName was called while the

name stack was empty.
GL_INVALID_OPERATION glLoadName was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glInitNames, glPushName, glRenderMode, glSelectBuffer

glLogicOp   

[New - Windows 95, OEM Service Release 2]

The glLogicOp function specifies a logical pixel operation for color index rendering.

void glLogicOp(
        GLenum opcode
     );

Parameters
opcode

A symbolic constant that selects a logical operation. The following symbols are accepted:
Opcode Resulting Value
GL_CLEAR 0
GL_SET 1
GL_COPY s
GL_COPY_INVERTED !s
GL_NOOP d
GL_INVERT !d
GL_AND s & d
GL_NAND !(s & d)
GL_OR s | d
GL_NOR !(s | d)
GL_XOR s ^ d
GL_EQUIV !(s ^ d)
GL_AND_REVERSE s & !d
GL_AND_INVERTED !s & d
GL_OR_REVERSE s | !d
GL_OR_INVERTED !s | d

Remarks
The glLogicOp function specifies a logical operation that, when enabled, is applied between the incoming
color index and the color index at the corresponding location in the frame buffer. The logical operation is
enabled or disabled with glEnable and glDisable using the symbolic constant GL_LOGIC_OP.

The opcode parameter is a symbolic constant chosen from the list below. In the explanation of the logical
operations, s represents the incoming color index and d represents the index in the frame buffer.
Standard C-language operators are used. As these bitwise operators suggest, the logical operation is
applied independently to each bit pair of the source and destination indexes.

Logical pixel operations are not applied to RGBA color buffers.

When more than one color-index buffer is enabled for drawing, logical operations are done separately for
each enabled buffer, using the contents of that buffer for the destination index (see glDrawBuffer).

The opcode parameter must be one of the 16 accepted values. Other values result in an error.

The following functions retrieve information related to glLogicOp:

glGet with argument GL_LOGIC_OP_MODE

glIsEnabled with argument GL_LOGIC_OP

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM opcode was not an accepted value.
GL_INVALID_OPERATION glLogicOp was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glAlphaFunc, glBegin, glBlendFunc, glDrawBuffer, glEnable, glEnd, glIsEnabled, glStencilOp

glMap1d, glMap1f
[New - Windows 95, OEM Service Release 2]

The glMap1d and glMap1f functions define a one-dimensional evaluator.

void glMap1d(
        GLenum target,
        GLdouble u1,
        GLdouble u2,
        GLint stride,
        GLint order,
        const GLdouble *points
     );

void glMap1f(
        GLenum target,
        GLfloat u1,
        GLfloat u2,
        GLint stride,
        GLint order,
        const GLfloat *points
     );

Parameters
target

The kind of values that are generated by the evaluator. Symbolic constants. The target parameter is a
symbolic constant that indicates what kind of control points are provided in points, and what output is
generated when the map is evaluated. It can assume one of nine predefined values:
GL_MAP1_VERTEX_3

Each control point is three floating-point values representing x, y, and z. Internal glVertex3
commands are generated when the map is evaluated.

GL_MAP1_VERTEX_4
Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4
commands are generated when the map is evaluated.

GL_MAP1_INDEX
Each control point is a single floating-point value representing a color index. Internal glIndex
commands are generated when the map is evaluated. However, the current index is not updated
with the value of these glIndex commands.

GL_MAP1_COLOR_4
Each control point is four floating-point values representing red, green, blue, and alpha. Internal
glColor4 commands are generated when the map is evaluated. However, the current color is not
updated with the value of these glColor4 commands.

GL_MAP1_NORMAL
Each control point is three floating-point values representing the x, y, and z components of a
normal vector. Internal glNormal commands are generated when the map is evaluated. However,
the current normal is not updated with the value of these glNormal commands.

GL_MAP1_TEXTURE_COORD_1
Each control point is a single floating-point value representing the s texture coordinate. Internal
glTexCoord1 commands are generated when the map is evaluated. However, the current texture
coordinates are not updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_2
Each control point is two floating-point values representing the s and t texture coordinates. Internal
glTexCoord2 commands are generated when the map is evaluated. However, the current texture

coordinates are not updated with the value of these glTexCoord commands.
GL_MAP1_TEXTURE_COORD_3

Each control point is three floating-point values representing the s, t, and r texture coordinates.
Internal glTexCoord3 commands are generated when the map is evaluated. However, the current
texture coordinates are not updated with the value of these glTexCoord commands.

GL_MAP1_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t, r, and q texture coordinates.
Internal glTexCoord4 commands are generated when the map is evaluated. However, the current
texture coordinates are not updated with the value of these glTexCoord commands.

u1, u2
A linear mapping of u, as presented to glEvalCoord1, to û, the variable that is evaluated by the
equations specified by this command.

stride
The number of floats or doubles between the beginning of one control point and the beginning of the
next one in the data structure referenced in points. This allows control points to be embedded in
arbitrary data structures. The only constraint is that the values for a particular control point must
occupy contiguous memory locations.

order
The number of control points. Must be positive.

points
A pointer to the array of control points.

Remarks
Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent to further stages of
OpenGL processing just as if they had been presented using glVertex, glNormal, glTexCoord, and
glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
OpenGL implementation) can be described using evaluators. These include almost all splines used in
computer graphics, including B-splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define p(û) as

{ewc msdncd, EWGraphic, bsd23545 2 /a "SDK.BMP"}

where R (i) is a control point and (û) is the ith Bernstein polynomial of degree n (order = n + 1):

{ewc msdncd, EWGraphic, bsd23545 3 /a "SDK.BMP"}

Recall that

{ewc msdncd, EWGraphic, bsd23545 4 /a "SDK.BMP"}

The glMap1 function is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling glEnable and glDisable with the map name, one
of the nine predefined values for target described above. The glEvalCoord1 function evaluates the one-
dimensional maps that are enabled. When glEvalCoord1 presents a value u, the Bernstein functions are
evaluated using û, where

{ewc msdncd, EWGraphic, bsd23545 5 /a "SDK.WMF"}

The stride, order, and points parameters define the array addressing for accessing the control points. The
points parameter is the location of the first control point, which occupies one, two, three, or four

contiguous memory locations, depending on which map is being defined. The order parameter is the
number of control points in the array. The stride parameter tells how many float or double locations to
advance the internal memory pointer to reach the next control point.

As is the case with all OpenGL commands that accept pointers to data, it is as if the contents of points
were copied by glMap1 before it returned. Changes to the contents of points have no effect after glMap1
is called.

The following functions retrieve information related to glMap1:

glGet with argument GL_MAX_EVAL_ORDER
glGetMap
glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE u1 was equal to u2.
GL_INVALID_VALUE stride was less than the number of

values in a control point.
GL_INVALID_VALUE order was less than one or greater

than GL_MAX_EVAL_ORDER.
GL_INVALID_OPERATION glMap1 was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glColor, glEnable, glEnd, glEvalCoord, glEvalMesh, glEvalPoint, glMap2, glMapGrid,
glNormal, glTexCoord, glVertex

glMap2d, glMap2f
[New - Windows 95, OEM Service Release 2]

The glMap2d and glMap2f functions define a two-dimensional evaluator.

void glMap2d(
        GLenum target,
        GLdouble u1,
        GLdouble u2,
        GLint ustride,
        GLint uorder,
        GLdouble v1,
        GLdouble v2,
        GLint vstride,
        GLint vorder,
        const GLdouble *points
     );

void glMap2f(
        GLenum target,
        GLfloat u1,
        GLfloat u2,
        GLint ustride,
        GLint uorder,
        GLfloat v1,
        GLfloat v2,
        GLint vstride,
        GLint vorder,
        const GLfloat *points
     );

Parameters
target

The kind of values that are generated by the evaluator. The following symbolic constants are
accepted:
GL_MAP2_VERTEX_3

Each control point is three floating-point values representing x, y, and z. Internal glVertex3
commands are generated when the map is evaluated.

GL_MAP2_VERTEX_4
Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4
commands are generated when the map is evaluated.

GL_MAP2_INDEX
Each control point is a single floating-point value representing a color index. Internal glIndex
commands are generated when the map is evaluated. The current index is not updated with the
value of these glIndex commands, however.

GL_MAP2_COLOR_4
Each control point is four floating-point values representing red, green, blue, and alpha. Internal
glColor4 commands are generated when the map is evaluated. The current color is not updated
with the value of these glColor4 commands, however.

GL_MAP2_NORMAL
Each control point is three floating-point values representing the x, y, and z components of a
normal vector. Internal glNormal commands are generated when the map is evaluated. The
current normal is not updated with the value of these glNormal commands, however.

GL_MAP2_TEXTURE_COORD_1
Each control point is a single floating-point value representing the s texture coordinate. Internal
glTexCoord1 commands are generated when the map is evaluated. The current texture
coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP2_TEXTURE_COORD_2
Each control point is two floating-point values representing the s and t texture coordinates. Internal
glTexCoord2 commands are generated when the map is evaluated. The current texture
coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP2_TEXTURE_COORD_3
Each control point is three floating-point values representing the s, t, and r texture coordinates.
Internal glTexCoord3 commands are generated when the map is evaluated. The current texture
coordinates are not updated with the value of these glTexCoord commands, however.

GL_MAP2_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t, r, and q texture coordinates.
Internal glTexCoord4 commands are generated when the map is evaluated. The current texture
coordinates are not updated with the value of these glTexCoord commands, however.

u1, u2
A linear mapping of u, as presented to glEvalCoord2, to û, one of the two variables that is evaluated
by the equations specified by this command.

ustride
The number of floats or doubles between the beginning of control point R (ij) and the beginning of
control point R ((i+1)j) , where i and j are the u and v control point indexes, respectively. This allows
control points to be embedded in arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

uorder
The dimension of the control point array in the u-axis. Must be positive.

v1, v2
A linear mapping of v, as presented to glEvalCoord2, to , one of the two variables that is evaluated
by the equations specified by this command.

vstride
The number of floats or doubles between the beginning of control point R (ij) and the beginning of
control point R (i(j+1)) , where i and j are the u and v control point indexes, respectively. This allows
control points to be embedded in arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

vorder
The dimension of the control point array in the v-axis. Must be positive.

points
A pointer to the array of control points.

Remarks
Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent on to further stages of
OpenGL processing just as if they had been presented using glVertex, glNormal, glTexCoord, and
glColor commands, except that the generated values do not update the current normal, texture
coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
OpenGL implementation) can be described using evaluators. These include almost all surfaces used in
computer graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(û,) as

{ewc msdncd, EWGraphic, bsd23545 6 /a "SDK.BMP"}

where R (ij) is a control point, (û) is the ith Bernstein polynomial of degree

n (uorder = n + 1)
{ewc msdncd, EWGraphic, bsd23545 7 /a "SDK.BMP"}
and () is the jth Bernstein polynomial of degree m (vorder = m + 1)
{ewc msdncd, EWGraphic, bsd23545 8 /a "SDK.BMP"}
Recall that
{ewc msdncd, EWGraphic, bsd23545 9 /a "SDK.BMP"}
The glMap2 function is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling glEnable and glDisable with the map name, one
of the nine predefined values for target, described above. When glEvalCoord2 presents values u and v,

the bivariate Bernstein polynomials are evaluated using û and , where

{ewc msdncd, EWGraphic, bsd23545 10 /a "SDK.BMP"}
{ewc msdncd, EWGraphic, bsd23545 11 /a "SDK.BMP"}

The target parameter is a symbolic constant that indicates what kind of control points are provided in
points, and what output is generated when the map is evaluated.

The ustride, uorder, vstride, vorder, and points parameters define the array addressing for accessing the
control points. The points parameter is the location of the first control point, which occupies one, two,
three, or four contiguous memory locations, depending on which map is being defined. There are
uorderxvorder control points in the array. The ustride parameter tells how many float or double locations
are skipped to advance the internal memory pointer from control point R (ij) to control point R ((i+1)j) . The
vstride parameter tells how many float or double locations are skipped to advance the internal memory
pointer from control point R (ij) to control point R (i(j+1)) .

As is the case with all OpenGL commands that accept pointers to data, it is as if the contents of points
were copied by glMap2 before it returned. Changes to the contents of points have no effect after glMap2
is called.

The following functions retrieve information related to glMap2:

glGet with argument GL_MAX_EVAL_ORDER
glGetMap
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not an accepted value.
GL_INVALID_VALUE u1 was equal to u2, or if v1 was equal

to v2.
GL_INVALID_VALUE either ustride or vstride was less than

the number of values in a control
point.

GL_INVALID_VALUE either uorder or vorder was less than
one or greater than
GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION glMap2 was called between a call to
glBegin and the corresponding call to
glEnd.

See Also
glBegin, glColor, glEnable, glEnd, glEvalCoord, glEvalMesh, glEvalPoint, glMap1, glMapGrid,
glNormal, glTexCoord, glVertex

glMapGrid1d, glMapGrid1f,
glMapGrid2d, glMapGrid2f

[New - Windows 95, OEM Service Release 2]

These functions define a one- or two-dimensional mesh.

void glMapGrid1d(
        GLint un,
        GLdouble u1,
        GLdouble u2
     );

void glMapGrid1f(
        GLint un,
        GLfloat u1,
        GLfloat u2
     );

void glMapGrid2d(
        GLint un,
        GLdouble u1,
        GLdouble u2,
        GLint vn,
        GLdouble v1,
        GLdouble v2
     );

void glMapGrid2f(
        GLint un,
        GLfloat u1,
        GLfloat u2,
        GLint vn,
        GLfloat v1,
        GLfloat v2
     );

Parameters
un

The number of partitions in the grid range interval [u1, u2]. Must be positive.
u1, u2

The mappings for integer grid domain values i = 0 and i = un.
vn

The number of partitions in the grid range interval [v1, v2] (glMapGrid2 only).
v1, v2

The mappings for integer grid domain values j = 0 and j = vn (glMapGrid2 only).

Remarks
The glMapGrid and glEvalMesh functions are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. The glEvalMesh function steps through the integer domain
of a one- or two-dimensional grid, whose range is the domain of the evaluation maps specified by glMap1
and glMap2.

The glMapGrid1 and glMapGrid2 functions specify the linear grid mappings between the i (or i and j)

integer grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See glMap1 and
glMap2 for details of how u and v coordinates are evaluated.

The glMapGrid1 function specifies a single linear mapping such that integer grid coordinate 0 maps
exactly to u1, and integer grid coordinate un maps exactly to u2. All other integer grid coordinates i are
mapped such that:

u = i(u2 - u1)/un + u1

The glMapGrid2 function specifies two such linear mappings. One maps integer grid coordinate i = 0
exactly to u1, and integer grid coordinate i = un exactly to u2. The other maps integer grid coordinate j = 0
exactly to v1, and integer grid coordinate j = vn exactly to v2. Other integer grid coordinates i and j are
mapped such that

u = i(u2 - u1)/un + u1
v = j (v2 - v1)/vn + v1

The mappings specified by glMapGrid are used identically by glEvalMesh and glEvalPoint.

The following functions retrieve information related to glMapGrid:

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE Either un or vn was not positive.
GL_INVALID_OPERATION glMapGrid was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glEvalCoord, glEvalMesh, glEvalPoint, glMap1, glMap2

glMaterialf, glMateriali, glMaterialfv,
glMaterialiv

[New - Windows 95, OEM Service Release 2]

These functions specify material parameters for the lighting model.

void glMaterialf(
        GLenum face,
        GLenum pname,
        GLfloat param
     );

void glMateriali(
        GLenum face,
        GLenum pname,
        GLint param
     );

Parameters
face

The face or faces that are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname
The single-valued material parameter of the face or faces being updated. Must be GL_SHININESS.

param
The value that parameter GL_SHININESS will be set to.

void glMaterialfv(
        GLenum face,
        GLenum pname,
        const GLfloat *params
     );

void glMaterialiv(
        GLenum face,
        GLenum pname,
        const GLint *params
     );

Parameters
face

The face or faces that are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname
The material parameter of the face or faces being updated. The parameters that can be specified
using glMaterial, and their interpretations by the lighting equation, are as follows:
GL_AMBIENT

The params parameter contains four integer or floating-point values that specify the ambient RGBA
reflectance of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default ambient reflectance for both front- and back-facing materials is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE

The params parameter contains four integer or floating-point values that specify the diffuse RGBA
reflectance of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default diffuse reflectance for both front- and back-facing materials is (0.8, 0.8, 0.8, 1.0).

GL_SPECULAR
The params parameter contains four integer or floating-point values that specify the specular
RGBA reflectance of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default specular reflectance for both front- and back-facing materials is (0.0, 0.0, 0.0, 1.0).

GL_EMISSION
The params parameter contains four integer or floating-point values that specify the RGBA emitted
light intensity of the material. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor floating-point values are clamped.
The default emission intensity for both front- and back-facing materials is (0.0, 0.0, 0.0, 1.0).

GL_SHININESS
The params parameter is a single integer or floating-point value that specifies the RGBA specular
exponent of the material. Integer and floating-point values are mapped directly. Only values in the
range [0,128] are accepted. The default specular exponent for both front- and back-facing
materials is 0.

GL_AMBIENT_AND_DIFFUSE
Equivalent to calling glMaterial twice with the same parameter values, once with GL_AMBIENT
and once with GL_DIFFUSE.

GL_COLOR_INDEXES
The params parameter contains three integer or floating-point values specifying the color indexes
for ambient, diffuse, and specular lighting. These three values, and GL_SHININESS, are the only
material values used by the color-index mode lighting equation. Refer to glLightModel for a
discussion of color-index lighting.

params
A pointer to the value or values to which pname will be set.

Remarks
The glMaterial function assigns values to material parameters. There are two matched sets of material
parameters. One, the front-facing set, is used to shade points, lines, bitmaps, and all polygons (when two-
sided lighting is disabled), or just front-facing polygons (when two-sided lighting is enabled). The other
set, back-facing, is used to shade back-facing polygons only when two-sided lighting is enabled. Refer to
glLightModel for details concerning one- and two-sided lighting calculations.

The glMaterial function takes three arguments. The first, face, specifies whether the GL_FRONT
materials, the GL_BACK materials, or both GL_FRONT_AND_BACK materials will be modified. The
second, pname, specifies which of several parameters in one or both sets will be modified. The third,
params, specifies what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. The
equation is discussed in glLightModel.

The material parameters can be updated at any time. In particular, glMaterial can be called between a
call to glBegin and the corresponding call to glEnd. If only a single material parameter is to be changed
per vertex, however, glColorMaterial is preferred over glMaterial.

The following function retrieves information related to glMaterial:

glGetMaterial

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM Either face or pname was not an

accepted value.
GL_INVALID_VALUE A specular exponent outside the

range [0,128] was specified.

See Also
glColorMaterial, glLight, glLightModel

glMatrixMode   

[New - Windows 95, OEM Service Release 2]

The glMatrixMode function specifies which matrix is the current matrix.

void glMatrixMode(
        GLenum mode
     );

Parameters
mode

The matrix stack that is the target for subsequent matrix operations. The mode parameter can
assume one of three values:
GL_MODELVIEW

Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION

Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE

Applies subsequent matrix operations to the texture matrix stack.

Remarks
The glMatrixMode function sets the current matrix mode.

The following function retrieves information related to glMatrixMode:

glGet with argument GL_MATRIX_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION glMatrixMode was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLoadMatrix, glPushMatrix

glMultMatrixd, glMultMatrixf
[New - Windows 95, OEM Service Release 2]

The glMultMatrixd and glMultMatrixf functions multiply the current matrix by an arbitrary matrix.

void glMultMatrixd(
        const GLdouble *m
     );

void glMultMatrixf(
        const GLfloat *m
     );

Parameters
m

A pointer to a 4x4 matrix stored in column-major order as 16 consecutive values.

Remarks
The glMultMatrix function multiplies the current matrix by the one specified in m. That is, if M is the
current matrix and T is the matrix passed to glMultMatrix, then M is replaced with M · T.

The current matrix is the projection matrix, modelview matrix, or texture matrix, determined by the current
matrix mode (see glMatrixMode).

The m parameter points to a 4x4 matrix of single- or double-precision floating-point values stored in
column-major order. That is, the matrix is stored as:

{ewc msdncd, EWGraphic, bsd23545 12 /a "SDK.BMP"}

The following functions retrieve information related to glMultMatrix:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glMultMatrix was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glLoadIdentity, glLoadMatrix, glMatrixMode, glPushMatrix

glNewList, glEndList
[New - Windows 95, OEM Service Release 2]

The glNewList and glEndList functions create or replace a display list.

void glNewList(
        GLuint list,
        GLenum mode
     );

void glEndList(
        void
     );

Parameters
list

The display list name.
mode

The compilation mode. The following values are accepted:
GL_COMPILE

Commands are merely compiled.
GL_COMPILE_AND_EXECUTE

Commands are executed as they are compiled into the display list.

Remarks
Display lists are groups of OpenGL commands that have been stored for subsequent execution. The
display lists are created with glNewList. All subsequent commands are placed in the display list, in the
order issued, until glEndList is called.

The glNewList function has two parameters. The first parameter, list, is a positive integer that becomes
the unique name for the display list. Names can be created and reserved with glGenLists and tested for
uniqueness with glIsList. The second parameter, mode, is a symbolic constant that can assume one of
the two preceding values.

Certain commands are not compiled into the display list, but are executed immediately, regardless of the
display list mode. These commands are glIsList, glGenLists, glDeleteLists, glFeedbackBuffer,
glSelectBuffer, glRenderMode, glReadPixels, glPixelStore, glFlush, glFinish, glIsEnabled, and all of
the glGet routines.

When the glNewList function is encountered, the display list definition is completed by associating the list
with the unique name list (specified in the glNewList command). If a display list with name list already
exists, it is replaced only when glEndList is called.

The glCallList and glCallLists functions can be entered into display lists. The commands in the display
list or lists executed by glCallList or glCallLists are not included in the display list being created, even if
the list creation mode is GL_COMPILE_AND_EXECUTE.

The following function retrieves information related to glNewList:

glGet with argument GL_MATRIX_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE list was zero.
GL_INVALID_ENUM mode was not an accepted value.
GL_INVALID_OPERATION glEndList was called without a

preceding glNewList, or if glNewList
was called while a display list was
being defined.

GL_INVALID_OPERATION glNewList was called between a call
to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glCallList, glCallLists, glDeleteLists, glEnd, glGenLists, glIsList

 glNormal
[New - Windows 95, OEM Service Release 2]

glNormal3b, glNormal3d, glNormal3f, glNormal3i, glNormal3s, glNormal3bv, glNormal3dv,
glNormal3fv, glNormal3iv, glNormal3sv

These functions set the current normal vector.

void glNormal3b(
        GLbyte nx,
        GLbyte ny,
        GLbyte nz
     );

void glNormal3d(
        GLdouble nx,
        GLdouble ny,
        GLdouble nz
     );

void glNormal3f(
        GLfloat nx,
        GLfloat ny,
        GLfloat nz
     );

void glNormal3i(
        GLint nx,
        GLint ny,
        GLint nz
     );

void glNormal3s(
        GLshort nx,
        GLshort ny,
        GLshort nz
     );

Parameters
nx, ny, nz

The x, y, and z coordinates of the new current normal. The initial value of the current normal is (0,0,1).

void glNormal3bv(
        const GLbyte *v
     );

void glNormal3dv(
        const GLdouble *v
     );

void glNormal3fv(
        const GLfloat *v
     );

void glNormal3iv(
        const GLint *v
     );

void glNormal3sv(
        const GLshort *v
     );

Parameters
v

A pointer to an array of three elements: the x, y, and z coordinates of the new current normal.

Remarks
The current normal is set to the given coordinates whenever glNormal is issued. Byte, short, or integer
arguments are converted to floating-point format with a linear mapping that maps the most positive
representable integer value to 1.0, and the most negative representable integer value to -1.0.

Normals specified with glNormal need not have unit length. If normalization is enabled, then normals
specified with glNormal are normalized after transformation. Normalization is controlled using glEnable
and glDisable with the argument GL_NORMALIZE. By default, normalization is disabled.

The current normal can be updated at any time. In particular, glNormal can be called between a call to
glBegin and the corresponding call to glEnd.

The following functions retrieve information related to glNormal:

glGet with argument GL_CURRENT_NORMAL
glIsEnable with argument GL_NORMALIZE

See Also
glBegin, glColor, glEnd, glIndex, glTexCoord, glVertex

glNormalPointer
[New - Windows 95, OEM Service Release 2]

The glNormalPointer function defines an array of normals.

void glNormalPointer(
        GLenum type,
        GLsizei stride,
        GLsizei count,
        const GLvoid *pointer
     );

Parameters
type

The data type of each coordinate in the array using the following symbolic constants: GL_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE.

stride
The byte offset between consecutive normals. When stride is zero, the normals are tightly packed in
the array.

count
The number of normals, counting from the first, that are static.

pointer
A pointer to the first normal in the array.

Remarks
The glNormalPointer function specifies the location and data of an array of normals to use when
rendering. The type parameter specifies the data type of each normal coordinate. The stride parameter
determines the byte offset from one normal to the next, enabling the packing of vertices and attributes in a
single array or storage in separate arrays. In some implementations storing the vertices and attributes in a
single array can be more efficient than using separate arrays. Starting from the first normal element,
count indicates the total number of static elements. Your application can modify static elements, but once
the elements are modified, the application must explicitly specify the array again before using the array for
any rendering. Non-static array elements are not accessed until you call glDrawArrays or
glArrayElement.

A normal array is enabled when you specify the GL_NORMAL_ARRAY constant with
glEnableClientState. When enabled, glDrawArrays and glArrayElement use the normal array. By
default the normal array is disabled.

You cannot include glNormalPointer in display lists.

When you specify a normal array using glNormalPointer, the values of all the function's normal array
parameters are saved in a client-side state and static array elements can be cached. Because the normal
array parameters are saved in a client-side state, their values are not saved or restored by glPushAttrib
and glPopAttrib.

Although no error is generated when you call glNormalPointer within glBegin and glEnd pairs, the
results are undefined.

The following functions are associated with glNormalPointer:

glGet with argument GL_NORMAL_ARRAY_STRIDE
glGet with argument GL_NORMAL_ARRAY_COUNT
glGet with argument GL_NORMAL_ARRAY_TYPE

glGetPointerv with argument GL_NORMAL_ARRAY_POINTER
glIsEnabled with argument GL_NORMAL_ARRAY

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE stride or count was negative.

See Also
glArrayElement, glColorPointer, glDrawArrays, glEdgeFlagPointer, glGetPointerv, glIndexPointer,
glIsEnabled, glTexCoordPointer, glVertexPointer, glGetString

glOrtho   

[New - Windows 95, OEM Service Release 2]

The glOrtho function multiplies the current matrix by an orthographic matrix.

void glOrtho(
        GLdouble left,
        GLdouble right,
        GLdouble bottom,
        GLdouble top,
        GLdouble near,
        GLdouble far
     );

Parameters
left, right

The coordinates for the left and right vertical clipping planes.
bottom, top

The coordinates for the bottom and top horizontal clipping planes.
near, far

The distances to the nearer and farther depth clipping planes. These distances are negative if the
plane is to be behind the viewer.

Remarks
The glOrtho function describes a perspective matrix that produces a parallel projection. The (left, bottom,
- near) and (right, top, - near) parameters specify the points on the near clipping plane that are mapped to
the lower-left and upper-right corners of the window, respectively, assuming that the eye is located at (0,
0, 0). The -far parameter specifies the location of the far clipping plane. Both near and far can be either
positive or negative. The corresponding matrix is

{ewc msdncd, EWGraphic, bsd23545 13 /a "SDK.BMP"}

where

{ewc msdncd, EWGraphic, bsd23545 14 /a "SDK.BMP"}

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, if M is
the current matrix and O is the ortho matrix, then M is replaced with M · O.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

The following functions retrieve information related to glOrtho:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glOrtho was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glFrustum, glMatrixMode, glMultMatrix, glPushMatrix, glViewport

glPassThrough   

[New - Windows 95, OEM Service Release 2]

The glPassThrough function places a marker in the feedback buffer.

void glPassThrough(
        GLfloat token
     );

Parameters
token

A marker value to be placed in the feedback buffer. It is indicated with the following unique identifying
value:
GL_PASS_THROUGH_TOKEN

The order of glPassThrough commands with respect to the specification of graphics primitives is
maintained.

Remarks
Feedback is an OpenGL render mode. The mode is selected by calling glRenderMode with
GL_FEEDBACK. When OpenGL is in feedback mode, no pixels are produced by rasterization. Instead,
information about primitives that would have been rasterized is fed back to the application using OpenGL.
See glFeedbackBuffer for a description of the feedback buffer and the values in it.

The glPassThrough function inserts a user-defined marker in the feedback buffer when it is executed in
feedback mode. The token parameter is returned as if it were a primitive.

The glPassThrough function is ignored if OpenGL is not in feedback mode.

The following function retrieves information related to glPassThrough:

glGet with argument GL_RENDER_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glPassThrough was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glFeedbackBuffer, glRenderMode

glPixelMapfv, glPixelMapuiv,
glPixelMapusv

[New - Windows 95, OEM Service Release 2]

These functions set up pixel transfer maps.

void glPixelMapfv(
        GLenum map,
        GLint mapsize,
        const GLfloat *values
     );

void glPixelMapuiv(
        GLenum map,
        GLint mapsize,
        const GLuint *values
     );

void glPixelMapusv(
        GLenum map,
        GLint mapsize,
        const GLushort *values
     );

Parameters
map

A symbolic map name. The ten maps are as follows:
GL_PIXEL_MAP_I_TO_I

Maps color indexes to color indexes.
GL_PIXEL_MAP_S_TO_S

Maps stencil indexes to stencil indexes.
GL_PIXEL_MAP_I_TO_R

Maps color indexes to red components.
GL_PIXEL_MAP_I_TO_G

Maps color indexes to green components.
GL_PIXEL_MAP_I_TO_B

Maps color indexes to blue components.
GL_PIXEL_MAP_I_TO_A

Maps color indexes to alpha components.
GL_PIXEL_MAP_R_TO_R

Maps red components to red components.
GL_PIXEL_MAP_G_TO_G

Maps green components to green components.
GL_PIXEL_MAP_B_TO_B

Maps blue components to blue components.
GL_PIXEL_MAP_A_TO_A

Maps alpha components to alpha components.
mapsize

The size of the map being defined.
values

An array of mapsize values.

Remarks
The glPixelMap function sets up translation tables, or maps, used by glDrawPixels, glReadPixels,
glCopyPixels, glTexImage1D, and glTexImage2D. Use of these maps is described completely in the
glPixelTransfer topic, and partly in the topics for the pixel and texture image commands. Only the
specification of the maps is described in this topic.

The map parameter is a symbolic map name, indicating one of ten maps to set. The mapsize parameter
specifies the number of entries in the map, and values is a pointer to an array of mapsize map values.

The entries in a map can be specified as single-precision floating-point numbers, unsigned short integers,
or unsigned long integers. Maps that store color component values (all but GL_PIXEL_MAP_I_TO_I and
GL_PIXEL_MAP_S_TO_S) retain their values in floating-point format, with unspecified mantissa and
exponent sizes. Floating-point values specified by glPixelMapfv are converted directly to the internal
floating-point format of these maps, and then clamped to the range [0,1]. Unsigned integer values
specified by glPixelMapusv and glPixelMapuiv are converted linearly such that the largest
representable integer maps to 1.0, and zero maps to 0.0.

Maps that store indexes, GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S, retain their values in
fixed-point format, with an unspecified number of bits to the right of the binary point. Floating-point values
specified by glPixelMapfv are converted directly to the internal fixed-point format of these maps.
Unsigned integer values specified by glPixelMapusv and glPixelMapuiv specify integer values, with all
zeros to the right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that are indexed by
either color or stencil indexes must have mapsize = 2^n for some n or results are undefined. The
maximum allowable size for each map depends on the implementation and can be determined by calling
glGet with argument GL_MAX_PIXEL_MAP_TABLE. The single maximum applies to all maps, and it is at
least 32.

GL_PIXEL_MAP_I_TO_I

Lookup Index: color index
Lookup Value: color index
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_S_TO_S

Lookup Index: stencil index
Lookup Value: stencil index
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_I_TO_R

Lookup Index: color index
Lookup Value: R
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_I_TO_G

Lookup Index: color index
Lookup Value: G

Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_I_TO_B

Lookup Index: color index
Lookup Value: B
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_I_TO_A

Lookup Index: color index
Lookup Value: A
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_R_TO_R

Lookup Index: R
Lookup Value: R
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_G_TO_G

Lookup Index: G
Lookup Value: G
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_B_TO_B

Lookup Index: B
Lookup Value: B
Initial Size: 1
Initial Value: 0.0

GL_PIXEL_MAP_A_TO_A

Lookup Index: A
Lookup Value: A
Initial Size: 1
Initial Value: 0.0

The following functions retrieve information related to glPixelMap:

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE

glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM map was not an accepted value.
GL_INVALID_VALUE mapsize was negative or larger than

GL_MAX_PIXEL_MAP_TABLE.
GL_INVALID_VALUE map was GL_PIXEL_MAP_I_TO_I,

GL_PIXEL_MAP_S_TO_S,
GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, or
GL_PIXEL_MAP_I_TO_A, and
mapsize was not a power of two.

GL_INVALID_OPERATION glPixelMap was called between a call
to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glCopyPixels, glDrawPixels, glEnd, glPixelStore, glPixelTransfer, glReadPixels,
glTexImage1D, glTexImage2D

glPixelStoref, glPixelStorei
[New - Windows 95, OEM Service Release 2]

The glPixelStoref and glPixelStorei functions set pixel storage modes.

void glPixelStoref(
        GLenum pname,
        GLfloat param
     );

void glPixelStorei(
        GLenum pname,
        GLint param
     );

Parameters
pname

The symbolic name of the parameter to be set. Six of the twelve storage parameters affect how pixel
data is returned to client memory, and are therefore significant only for glReadPixels commands.
They are as follows:
GL_PACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components, color indexes, or stencil
indexes is reversed. That is, if a four-byte component is made up of bytes b (0) , b (1) , b (2) , b (3) , it is
stored in memory as b (3) , b (2) , b (1) , b (0) if GL_PACK_SWAP_BYTES is true.
GL_PACK_SWAP_BYTES has no effect on the memory order of components within a pixel, only
on the order of bytes within components or indexes. For example, the three components of a
GL_RGB format pixel are always stored with red first, green second, and blue third, regardless of
the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first bit
in each byte is the most significant one. This parameter is significant for bitmap data only.

GL_PACK_ROW_LENGTH
If greater than zero, GL_PACK_ROW_LENGTH defines the number of pixels in a row. If the first
pixel of a row is placed at location p in memory, then the location of the first pixel of the next row is
obtained by skipping

{ewc msdncd, EWGraphic, bsd23545 15 /a "SDK.BMP"}

components or indexes, where n is the number of components or indexes in a pixel, l is the
number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than zero, the width argument
to the pixel routine otherwise), a is the value of GL_PACK_ALIGNMENT, and s is the size, in bytes,
of a single component (if a < s, then it is as if a = s). In the case of 1-bit values, the location of the
next row is obtained by skipping

{ewc msdncd, EWGraphic, bsd23545 16 /a "SDK.BMP"}

components or indexes.
The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green,
and finally blue.

GL_PACK_SKIP_PIXELS and GL_PACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no functionality that
cannot be duplicated simply by incrementing the pointer passed to glReadPixels. Setting
GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by i n components or
indexes, where n is the number of components or indexes in each pixel. Setting

GL_PACK_SKIP_ROWS to j is equivalent to incrementing the pointer by j k components or
indexes, where k is the number of components or indexes per row, as computed above in the
GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word alignment), and 8
(rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory.
These values are significant for glDrawPixels, glTexImage1D, glTexImage2D, glBitmap, and
glPolygonStipple. They are as follows:
GL_UNPACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components, color indexes, or stencil
indexes is reversed. That is, if a four-byte component is made up of bytes b (0) , b (1) , b (2) , b (3) , it is
taken from memory as b (3) , b (2) , b (1) , b (0) if GL_UNPACK_SWAP_BYTES is true.
GL_UNPACK_SWAP_BYTES has no effect on the memory order of components within a pixel,
only on the order of bytes within components or indexes. For example, the three components of a
GL_RGB format pixel are always stored with red first, green second, and blue third, regardless of
the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first bit
in each byte is the most significant one. This is significant for bitmap data only.

GL_UNPACK_ROW_LENGTH
If greater than zero, GL_UNPACK_ROW_LENGTH defines the number of pixels in a row. If the first
pixel of a row is placed at location p in memory, then the location of the first pixel of the next row is
obtained by skipping

{ewc msdncd, EWGraphic, bsd23545 17 /a "SDK.BMP"}

components or indexes, where n is the number of components or indexes in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than zero, the width
argument to the pixel routine otherwise), a is the value of GL_UNPACK_ALIGNMENT, and s is the
size, in bytes, of a single component (if a < s, then it is as if a = s). In the case of 1-bit values, the
location of the next row is obtained by skipping

{ewc msdncd, EWGraphic, bsd23545 18 /a "SDK.BMP"}

components or indexes.
The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then green,
and finally blue.

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no functionality that
cannot be duplicated simply by incrementing the pointer passed to glDrawPixels, glTexImage1D,
glTexImage2D, glBitmap, or glPolygonStipple. Setting GL_UNPACK_SKIP_PIXELS to i is
equivalent to incrementing the pointer by i n components or indexes, where n is the number of
components or indexes in each pixel. Setting GL_UNPACK_SKIP_ROWS to j is equivalent to
incrementing the pointer by j k components or indexes, where k is the number of components or
indexes per row, as computed above in the GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word alignment), and 8
(rows start on double-word boundaries).

param
The value that pname is set to.

Remarks
The glPixelStore function sets pixel storage modes that affect the operation of subsequent glDrawPixels
and glReadPixels as well as the unpacking of polygon stipple patterns (see glPolygonStipple), bitmaps
(see glBitmap), and texture patterns (see glTexImage1D and glTexImage2D).

The following table gives the type, initial value, and range of valid values for each of the storage
parameters that can be set with glPixelStore.

Pname Type Initial
Value

Valid Range

GL_PACK_SWAP_BYTES Boolean false true or false
GL_PACK_SWAP_BYTES Boolean false true or false
GL_PACK_ROW_LENGTH integer 0 [0,)
GL_PACK_SKIP_ROWS integer 0 [0,)
GL_PACK_SKIP_PIXELS integer 0 [0,)
GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8
GL_UNPACK_SWAP_BYTES Boolean false true or false
GL_UNPACK_LSB_FIRST Boolean false true or false
GL_UNPACK_ROW_LENGTH integer 0 [0,)
GL_UNPACK_SKIP_ROWS integer 0 [0,)
GL_UNPACK_SKIP_PIXELS integer 0 [0,)
GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8

The glPixelStoref function can be used to set any pixel store parameter. If the parameter type is
Boolean, and if param is 0.0, then the parameter is false; otherwise it is set to true. If pname is an integer
type parameter, then param is rounded to the nearest integer.

Likewise, the glPixelStorei function can also be used to set any of the pixel store parameters. Boolean
parameters are set to false if param is 0 and true otherwise. The param parameter is converted to floating
point before being assigned to real-valued parameters.

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D,
glBitmap, or glPolygonStipple is placed in a display list control the interpretation of memory data. The
pixel storage modes in effect when a display list is executed are not significant.

The following functions retrieve information related to glPixelStore:

glGet with argument GL_PACK_SWAP_BYTES
glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_ALIGNMENT

Error Codes

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.
GL_INVALID_VALUE A negative row length, pixel skip, or

row skip value was specified, or if
alignment was specified as other than
1, 2, 4, or 8.

GL_INVALID_OPERATION glPixelStore was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glBitmap, glDrawPixels, glEnd, glPixelMap, glPixelTransfer, glPixelZoom,
glPolygonStipple, glReadPixels, glTexImage1D, glTexImage2D

glPixelTransferf, glPixelTransferi
[New - Windows 95, OEM Service Release 2]

The glPixelTransferf and glPixelTransferi functions set pixel transfer modes.

void glPixelTransferf(
        GLenum pname,
        GLfloat param
     );

void glPixelTransferi(
        GLenum pname,
        GLint param
     );

Parameters
pname

The symbolic name of the pixel transfer parameter to be set. The following table gives the type, initial
value, and range of valid values for each of the pixel transfer parameters that are set with
glPixelTransfer.

Pname Type Initial Value Valid Range
GL_MAP_COLOR Boolean false true/false
GL_MAP_STENCIL Boolean false true/false
GL_INDEX_SHIFT integer 0 (- ,)
GL_INDEX_OFFSET integer 0 (- ,)
GL_RED_SCALE float 1.0 (- ,)
GL_GREEN_SCALE float 1.0 (- ,)
GL_BLUE_SCALE float 1.0 (- ,)
GL_ALPHA_SCALE float 1.0 (- ,)
GL_DEPTH_SCALE float 1.0 (- ,)
GL_RED_BIAS float 0.0 (- ,)
GL_GREEN_BIAS float 0.0 (- ,)
GL_BLUE_BIAS float 0.0 (- ,)
GL_ALPHA_BIAS float 0.0 (- ,)
GL_DEPTH_BIAS float 0.0 (- ,)

param
The value that pname is set to.

Remarks
The glPixelTransfer function sets pixel transfer modes that affect the operation of subsequent
glDrawPixels, glReadPixels, glCopyPixels, glTexImage1D, and glTexImage2D commands. The
algorithms that are specified by pixel transfer modes operate on pixels after they are read from the frame
buffer (glReadPixels and glCopyPixels) or unpacked from client memory (glDrawPixels,
glTexImage1D, and glTexImage2D). Pixel transfer operations happen in the same order, and in the
same manner, regardless of the command that resulted in the pixel operation. Pixel storage modes
(glPixelStore) control the unpacking of pixels being read from client memory, and the packing of pixels
being written back into client memory.

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil. Color
pixels are made up of four floating-point values with unspecified mantissa and exponent sizes, scaled

such that 0.0 represents zero intensity and 1.0 represents full intensity. Color indexes comprise a single
fixed-point value, with unspecified precision to the right of the binary point. Depth pixels comprise a single
floating-point value, with unspecified mantissa and exponent sizes, scaled such that 0.0 represents the
minimum depth buffer value, and 1.0 represents the maximum depth buffer value. Finally, stencil pixels
comprise a single fixed-point value, with unspecified precision to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

Color
Each of the four color components is multiplied by a scale factor, and then added to a bias factor.
That is, the red component is multiplied by GL_RED_SCALE, and then added to GL_RED_BIAS; the
green component is multiplied by GL_GREEN_SCALE, and then added to GL_GREEN_BIAS; the
blue component is multiplied by GL_BLUE_SCALE, and then added to GL_BLUE_BIAS; and the
alpha component is multiplied by GL_ALPHA_SCALE, and then added to GL_ALPHA_BIAS. After all
four color components are scaled and biased, each is clamped to the range [0,1]. All color scale and
bias values are specified with glPixelTransfer.
If GL_MAP_COLOR is true, each color component is scaled by the size of the corresponding color-to-
color map, and then replaced by the contents of that map indexed by the scaled component. That is,
the red component is scaled by GL_PIXEL_MAP_R_TO_R_SIZE, and then replaced by the contents
of GL_PIXEL_MAP_R_TO_R indexed by itself. The green component is scaled by
GL_PIXEL_MAP_G_TO_G_SIZE, and then replaced by the contents of GL_PIXEL_MAP_G_TO_G
indexed by itself. The blue component is scaled by GL_PIXEL_MAP_B_TO_B_SIZE, and then
replaced by the contents of GL_PIXEL_MAP_B_TO_B indexed by itself. The alpha component is
scaled by GL_PIXEL_MAP_A_TO_A_SIZE, and then replaced by the contents of
GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken from the maps are then clamped
to the range [0,1]. GL_MAP_COLOR is specified with glPixelTransfer. The contents of the various
maps are specified with glPixelMap.

Color index
Each color index is shifted left by GL_INDEX_SHIFT bits, filling with zeros any bits beyond the
number of fraction bits carried by the fixed-point index. If GL_INDEX_SHIFT is negative, the shift is to
the right, again zero filled. GL_INDEX_OFFSET is then added to the index. GL_INDEX_SHIFT and
GL_INDEX_OFFSET are specified with glPixelTransfer.
From this point, operation diverges depending on the required format of the resulting pixels. If the
resulting pixels are to be written to a color-index buffer, or if they are being read back to client
memory in GL_COLOR_INDEX format, the pixels continue to be treated as indexes. If
GL_MAP_COLOR is true, then each index is masked by 2^n - 1, where n is
GL_PIXEL_MAP_I_TO_I_SIZE, and then replaced by the contents of GL_PIXEL_MAP_I_TO_I
indexed by the masked value. GL_MAP_COLOR is specified with glPixelTransfer. The contents of
the index map are specified with glPixelMap.
If the resulting pixels are to be written to an RGBA color buffer, or if they are being read back to client
memory in a format other than GL_COLOR_INDEX, the pixels are converted from indexes to colors
by referencing the four maps GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index is
masked by 2n - 1, where n is GL_PIXEL_MAP_I_TO_R_SIZE for the red map,
GL_PIXEL_MAP_I_TO_G_SIZE for the green map, GL_PIXEL_MAP_I_TO_B_SIZE for the blue map,
and GL_PIXEL_MAP_I_TO_A_SIZE for the alpha map. All components taken from the maps are then
clamped to the range [0,1]. The contents of the four maps are specified with glPixelMap.

Depth
Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and then
clamped to the range [0,1].

Stencil
Each index is shifted GL_INDEX_SHIFT bits just as a color index is, and then added to
GL_INDEX_OFFSET. If GL_MAP_STENCIL is true, each index is masked by 2^n - 1, where n is
GL_PIXEL_MAP_S_TO_S_SIZE, then replaced by the contents of GL_PIXEL_MAP_S_TO_S
indexed by the masked value.

The glPixelTransferf function can be used to set any pixel transfer parameter. If the parameter type is
Boolean, 0.0 implies false and any other value implies true. If pname is an integer parameter, param is
rounded to the nearest integer.

Likewise, glPixelTransferi can also be used to set any of the pixel transfer parameters. Boolean
parameters are set to false if param is 0 and true otherwise. The param parameter is converted to floating
point before being assigned to real-valued parameters.

If a glDrawPixels, glReadPixels, glCopyPixels, glTexImage1D, or glTexImage2D command is placed
in a display list (see glNewList and glCallList), the pixel transfer mode settings in effect when the display
list is executed are the ones that are used. They may be different from the settings when the command
was compiled into the display list.

The following functions retrieve information related to glPixelTransfer:

glGet with argument GL_MAP_COLOR
glGet with argument GL_MAP_STENCIL
glGet with argument GL_INDEX_SHIFT
glGet with argument GL_INDEX_OFFSET
glGet with argument GL_RED_SCALE
glGet with argument GL_RED_BIAS
glGet with argument GL_GREEN_SCALE
glGet with argument GL_GREEN_BIAS
glGet with argument GL_BLUE_SCALE
glGet with argument GL_BLUE_BIAS
glGet with argument GL_ALPHA_SCALE
glGet with argument GL_ALPHA_BIAS
glGet with argument GL_DEPTH_SCALE
glGet with argument GL_DEPTH_BIAS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM pname was not an accepted value.
GL_INVALID_OPERATION glPixelTransfer was called between

a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glCallList, glCopyPixels, glDrawPixels, glEnd, glNewList, glPixelMap, glPixelStore,
glPixelZoom, glReadPixels, glTexImage1D, glTexImage2D

glPixelZoom   

[New - Windows 95, OEM Service Release 2]

The glPixelZoom function specifies the pixel zoom factors.

void glPixelZoom(
        GLfloat xfactor,
        GLfloat yfactor
     );

Parameters
xfactor, yfactor

The x and y zoom factors for pixel write operations.

Remarks
The glPixelZoom function specifies values for the x and y zoom factors. During the execution of
glDrawPixels or glCopyPixels, if (x (r) , y (r)) is the current raster position, and a given element is in the
nth row and mth column of the pixel rectangle, then pixels whose centers are in the rectangle with corners
at

{ewc msdncd, EWGraphic, bsd23545 19 /a "SDK.BMP"}

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this rectangular
region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting image
about the current raster position.

The following functions retrieve information related to glPixelZoom:

glGet with argument GL_ZOOM_X
glGet with argument GL_ZOOM_Y

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glPixelZoom was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glCopyPixels, glDrawPixels, glEnd

glPointSize   

[New - Windows 95, OEM Service Release 2]

The glPointSize function specifies the diameter of rasterized points.

void glPointSize(
        GLfloat size
     );

Parameters
size

The diameter of rasterized points. The default is 1.0.

Remarks
The glPointSize function specifies the rasterized diameter of both aliased and antialiased points. Using a
point size other than 1.0 has different effects, depending on whether point antialiasing is enabled. Point
antialiasing is controlled by calling glEnable and glDisable with argument GL_POINT_SMOOTH.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the nearest
integer. (If the rounding results in the value 0, it is as if the point size were 1.) If the rounded size is odd,
then the center point (x, y) of the pixel fragment that represents the point is computed as

(ëx (w) û + .5, ëy (w) û + .5)

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the rounded
size centered at (x, y) make up the fragment. If the size is even, the center point is

(ëx (w) + .5û, ëy (w) + .5û)

and the rasterized fragment's centers are the half-integer window coordinates within the square of the
rounded size centered at (x, y). All pixel fragments produced in rasterizing a nonantialiased point are
assigned the same associated data; that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that
intersects the region lying within the circle having diameter equal to the current point size and centered at
the points (x (w) , y (w)). The coverage value for each fragment is the window coordinate area of the
intersection of the circular region with the corresponding pixel square. This value is saved and used in the
final rasterization step. The data associated with each fragment is the data associated with the point
being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested, the
nearest supported size is used. Only size 1.0 is guaranteed to be supported; others depend on the
implementation. The range of supported sizes and the size difference between supported sizes within the
range can be queried by calling glGet with arguments GL_POINT_SIZE_RANGE and
GL_POINT_SIZE_GRANULARITY.

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried. Clamping
and rounding for aliased and antialiased points have no effect on the specified value.

Non-antialiased point size may be clamped to an implementation-dependent maximum. Although this
maximum cannot be queried, it must be no less than the maximum value for antialiased points, rounded
to the nearest integer value.

The following functions retrieve information related to glPointSize:

glGet with argument GL_POINT_SIZE
glGet with argument GL_POINT_SIZE_RANGE
glGet with argument GL_POINT_SIZE_GRANULARITY
glIsEnabled with argument GL_POINT_SMOOTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE size was less than or equal to zero.
GL_INVALID_OPERATION glPointSize was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnable, glEnd, glIsEnabled

glPolygonMode   

[New - Windows 95, OEM Service Release 2]

The glPolygonMode function selects a polygon rasterization mode.

void glPolygonMode(
        GLenum face,
        GLenum mode
     );

Parameters
face

The polygons that mode applies to. Must be GL_FRONT for front-facing polygons, GL_BACK for
back-facing polygons, or GL_FRONT_AND_BACK for front- and back-facing polygons.

mode
The way polygons will be rasterized. The following modes are defined and can be specified in mode.
The default is GL_FILL for both front- and back-facing polygons.
GL_POINT

Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point
attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasterization of the
points. Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_LINE
Boundary edges of the polygon are drawn as line segments. They are treated as connected line
segments for line stippling; the line stipple counter and pattern are not reset between segments
(see glLineStipple). Line attributes such as GL_LINE_WIDTH and GL_LINE_SMOOTH control
the rasterization of the lines. Polygon rasterization attributes other than GL_POLYGON_MODE
have no effect.

GL_FILL
The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE and
GL_POLYGON_SMOOTH control the rasterization of the polygon.

Remarks
The glPolygonMode function controls the interpretation of polygons for rasterization. The face parameter
describes which polygons mode applies to: front-facing polygons (GL_FRONT), back-facing polygons
(GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects only the final rasterization of
polygons. In particular, a polygon's vertices are lit and the polygon is clipped and possibly culled before
these modes are applied.

To draw a surface with filled back-facing polygons and outlined front-facing polygons, call

glPolygonMode(GL_FRONT, GL_LINE);

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated internally
by OpenGL when it decomposes polygons, and they can be set explicitly using glEdgeFlag.

The following function retrieves information related to glPolygonMode:

glGet with argument GL_POLYGON_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition

GL_INVALID_ENUM Either face or mode was not an
accepted value.

GL_INVALID_OPERATION glPolygonMode was called between
a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEdgeFlag, glEnd, glLineStipple, glLineWidth, glPointSize, glPolygonStipple

glPolygonStipple   

[New - Windows 95, OEM Service Release 2]

The glPolygonStipple function sets the polygon stippling pattern.

void glPolygonStipple(
        const GLubyte *mask
     );

Parameters
mask

A pointer to a 32x32 stipple pattern that will be unpacked from memory in the same way that
glDrawPixels unpacks pixels.

Remarks
The glPolygonStipple function sets the polygon stippling pattern. Polygon stippling, like line stippling
(see glLineStipple), masks out certain fragments produced by rasterization, creating a pattern. Stippling
is independent of polygon antialiasing.

The mask parameter is a pointer to a 32x32 stipple pattern that is stored in memory just like the pixel data
supplied to glDrawPixels with height and width both equal to 32, a pixel format of GL_COLOR_INDEX,
and data type of GL_BITMAP. That is, the stipple pattern is represented as a 32x32 array of 1-bit color
indexes packed in unsigned bytes. The glPixelStore function parameters, such as
GL_UNPACK_SWAP_BYTES and GL_UNPACK_LSB_FIRST, affect the assembling of the bits into a
stipple pattern. Pixel transfer operations (shift, offset, and pixel map) are not applied to the stipple image,
however.

Polygon stippling is enabled and disabled with glEnable and glDisable, using argument
GL_POLYGON_STIPPLE. If enabled, a rasterized polygon fragment with window coordinates x (w) and y
(w) is sent to the next stage of OpenGL if and only if the (x (w) mod 32)th bit in the (y (w) mod 32)th row of
the stipple pattern is one. When polygon stippling is disabled, it is as if the stipple pattern were all ones.

The following functions retrieve information related to glPolygonStipple:

glGetPolygonStipple
glIsEnabled with argument GL_POLYGON_STIPPLE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glPolygonStipple was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glDrawPixels, glEnd, glLineStipple, glPixelStore, glPixelTransfer

glPrioritizeTextures
[New - Windows 95, OEM Service Release 2]

The glPrioritizeTextures function sets the residence priority of textures.

void glPrioritizeTextures(
        GLsizei n,
        GLuint * textures,
        GLclampf * priorities
     );

Parameters
n

The number of textures to be prioritized.
textures

A pointer to the first element of an array containing the names of the textures to be prioritized.
priorities

A pointer to the first element of an array containing the texture priorities. A priority given in an element
of the priorities parameter applies to the texture named by the corresponding element of the textures
parameter.

Remarks
The glPrioritizeTextures function assigns the n texture priorities specified in the priorities parameter to
the n textures named in the textures parameter. On machines with a limited amount of texture memory,
OpenGL establishes a ``working set'' of textures that are resident in texture memory. These textures can
be bound to a texture target much more efficiently than textures that are not resident.

By specifying a priority for each texture, the glPrioritizeTextures function enables you to determine
which textures should be resident.

The texture priorities elements in priorities are clamped to the range [0.0, 1.0] before being assigned.
Zero indicates the lowest priority; thus textures with priority zero are least likely to be resident. The value
1.0 indicates the highest priority; thus textures with priority 1.0 are most likely to be resident. However,
textures are not guaranteed to be resident until they are bound.

The glPrioritizeTextures function ignores attempts to prioritize textures with a priorities value of zero or
any texture name that does not correspond to an existing texture. None of the functions named by the
textures parameter need to be bound to a texture target.

If a texture is currently bound, you can also use the glTexParameter function to set its priority. This is the
only way to set the priority of a default texture.

You can include glPrioritizeTextures in display lists.

Note    The glPrioritizeTextures function is only available in OpenGL version 1.1 or later.

The following function retrieves the priority of a currently-bound texture related to glPrioritizeTextures:

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE n was a negative value.
GL_INVALID_OPERATION glPrioritizeTextures was called

between a call to glBegin and the
corresponding call to glEnd.

See Also
glAreTexturesResident, glBegin, glEnd, glGetTexParameter, glTexImage1D, glTexImage2D,
glTexParameter

glPushAttrib, glPopAttrib
[New - Windows 95, OEM Service Release 2]

The glPushAttrib and glPopAttrib functions push and pop the attribute stack.

void glPushAttrib(
        GLbitfield mask
     );

Parameter
mask

A mask that indicates which attributes to save. The symbolic mask constants and their associated
OpenGL state are as follows (the indented paragraphs list which attributes are saved):
GL_ACCUM_BUFFER_BIT

Accumulation buffer clear value
GL_COLOR_BUFFER_BIT

GL_ALPHA_TEST enable bit
Alpha test function and reference value
GL_BLEND enable bit
Blending source and destination functions
GL_DITHER enable bit
GL_DRAW_BUFFER setting
GL_LOGIC_OP enable bit
Logic op function
Color-mode and index-mode clear values
Color-mode and index-mode writemasks

GL_CURRENT_BIT
Current RGBA color
Current color index
Current normal vector
Current texture coordinates
Current raster position
GL_CURRENT_RASTER_POSITION_VALID flag
RGBA color associated with current raster position
Color index associated with current raster position
Texture coordinates associated with current raster position
GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT
GL_DEPTH_TEST enable bit
Depth buffer test function
Depth buffer clear value
GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT
GL_ALPHA_TEST flag
GL_AUTO_NORMAL flag
GL_BLEND flag
Enable bits for the user-definable clipping planes
GL_COLOR_MATERIAL
GL_CULL_FACE flag
GL_DEPTH_TEST flag
GL_DITHER flag
GL_FOG flag
GL_LIGHTi where 0 <= i < GL_MAX_LIGHTS

GL_LIGHTING flag
GL_LINE_SMOOTH flag
GL_LINE_STIPPLE flag
GL_LOGIC_OP flag
GL_MAP1_x where x is a map type
GL_MAP2_x where x is a map type
GL_NORMALIZE flag
GL_POINT_SMOOTH flag
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE flag
GL_SCISSOR_TEST flag
GL_STENCIL_TEST flag
GL_TEXTURE_1D flag
GL_TEXTURE_2D flag
Flags GL_TEXTURE_GEN_x where x is S, T, R, or Q

GL_EVAL_BIT
GL_MAP1_x enable bits, where x is a map type
GL_MAP2_x enable bits, where x is a map type
1-D grid endpoints and divisions
2-D grid endpoints and divisions
GL_AUTO_NORMAL enable bit

GL_FOG_BIT
GL_FOG enable flag
Fog color
Fog density
Linear fog start
Linear fog end
Fog index
GL_FOG_MODE value

GL_HINT_BIT
GL_PERSPECTIVE_CORRECTION_HINT setting
GL_POINT_SMOOTH_HINT setting
GL_LINE_SMOOTH_HINT setting
GL_POLYGON_SMOOTH_HINT setting
GL_FOG_HINT setting

GL_LIGHTING_BIT
GL_COLOR_MATERIAL enable bit
GL_COLOR_MATERIAL_FACE value
Color material parameters that are tracking the current color
Ambient scene color
GL_LIGHT_MODEL_LOCAL_VIEWER value
GL_LIGHT_MODEL_TWO_SIDE setting
GL_LIGHTING enable bit
Enable bit for each light
Ambient, diffuse, and specular intensity for each light
Direction, position, exponent, and cutoff angle for each light
Constant, linear, and quadratic attenuation factors for each light
Ambient, diffuse, specular, and emissive color for each material
Ambient, diffuse, and specular color indexes for each material
Specular exponent for each material
GL_SHADE_MODEL setting

GL_LINE_BIT
GL_LINE_SMOOTH flag
GL_LINE_STIPPLE enable bit
Line stipple pattern and repeat counter

Line width
GL_LIST_BIT

GL_LIST_BASE setting
GL_PIXEL_MODE_BIT

GL_RED_BIAS and GL_RED_SCALE settings
GL_GREEN_BIAS and GL_GREEN_SCALE values
GL_BLUE_BIAS and GL_BLUE_SCALE
GL_ALPHA_BIAS and GL_ALPHA_SCALE
GL_DEPTH_BIAS and GL_DEPTH_SCALE
GL_INDEX_OFFSET and GL_INDEX_SHIFT values
GL_MAP_COLOR and GL_MAP_STENCIL flags
GL_ZOOM_X and GL_ZOOM_Y factors
GL_READ_BUFFER setting

GL_POINT_BIT
GL_POINT_SMOOTH flag
Point size

GL_POLYGON_BIT
GL_CULL_FACE enable bit
GL_CULL_FACE_MODE value
GL_FRONT_FACE indicator
GL_POLYGON_MODE setting
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE enable bit

GL_POLYGON_STIPPLE_BIT
Polygon stipple image

GL_SCISSOR_BIT
GL_SCISSOR_TEST flag
Scissor box

GL_STENCIL_BUFFER_BIT
GL_STENCIL_TEST enable bit
Stencil function and reference value
Stencil value mask
Stencil fail, pass, and depth buffer pass actions
Stencil buffer clear value
Stencil buffer writemask

GL_TEXTURE_BIT
Enable bits for the four texture coordinates
Border color for each texture image
Minification function for each texture image
Magnification function for each texture image
Texture coordinates and wrap mode for each texture image
Color and mode for each texture environment
Enable bits GL_TEXTURE_GEN_x; x is S, T, R, and Q
GL_TEXTURE_GEN_MODE setting for S, T, R, and Q
glTexGen plane equations for S, T, R, and Q

GL_TRANSFORM_BIT
Coefficients of the six clipping planes
Enable bits for the user-definable clipping planes
GL_MATRIX_MODE value
GL_NORMALIZE flag

GL_VIEWPORT_BIT
Depth range (near and far)
Viewport origin and extent

void glPopAttrib(
        void
     );

Remarks
The glPushAttrib function takes one argument, a mask that indicates which groups of state variables to
save on the attribute stack. Symbolic constants are used to set bits in the mask. The mask parameter is
typically constructed by ORing several of these constants together. The special mask
GL_ALL_ATTRIB_BITS can be used to save all stackable states.

The glPopAttrib function restores the values of the state variables saved with the last glPushAttrib
command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the
error flag is set and no other change is made to the OpenGL state.

Initially, the attribute stack is empty.

Not all values for the OpenGL state can be saved on the attribute stack. For example, pixel pack and
unpack state, render mode state, and select and feedback state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least 16.

The following functions retrieve information related to glPushAttrib and glPopAttrib:

glGet with argument GL_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_ATTRIB_STACK_DEPTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_STACK_OVERFLOW glPushAttrib was called while the

attribute stack was full.
GL_STACK_UNDERFLOW glPopAttrib was called while the

attribute stack was empty.
GL_INVALID_OPERATION glPushAttrib was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glGet, glGetClipPlane, glGetError, glGetLight, glGetMap, glGetMaterial,
glGetPixelMap, glGetPolygonStipple, glGetString, glGetTexEnv, glGetTexGen, glGetTexImage,
glGetTexLevelParameter, glGetTexParameter, glIsEnabled

glPushClientAttrib, glPopClientAttrib
[New - Windows 95, OEM Service Release 2]

The glPushClientAttrib and glPopClientAttrib functions save and restore groups of client-state
variables on the client-attribute stack.

void glPushClientAttrib(
        GLbitfield mask
     );

Parameters
mask

A mask that indicates which attributes to save. The following are the symbolic mask constants and
their associated OpenGL client state:
GL_CLIENT_PIXEL_STORE_BIT

Pixel storage mode attributes.
GL_CLIENT_VERTEX_ARRAY_BIT

Vertex array attributes.
GL_CLIENT_ALL_ATTRIB_BITS

All stackable client-state attributes.

void glPopClientAttrib(
        void void
     );

Remarks
The glPushClientAttrib function uses its mask parameter to determine which groups of client-state
variables are saved on the client-attribute stack. You can OR together accepted symbolic constants to set
bits and construct a mask.

The glPopClientAttrib function restores the values of the client-state variables last saved with
glPushClientAttrib. Client-state variables not previously saved are left unchanged. Pushing attributes
onto a full client-attribute stack or popping attributes off an empty stack sets an error flag and no other
change is made to the OpenGL state. By default the client attribute stack is empty.

Some OpenGL client-state values cannot be saved on the client-attribute stack. For example, you cannot
save the select or feedback states on the client-attribute stack. The depth of the client-attribute stack is at
least 16.

The glPushClientAttrib and glPopClientAttrib functions are not compiled into display lists, but are
executed immediately.

The glPushClientAttrib and glPopClientAttrib functions can only push and pop pixel storage modes
and vertex array client states. You must use glPushAttrib and glPopAttrib to push and pop states that
are kept on the server.

Note    The glPushClientAttrib and glPopClientAttrib functions are only available in OpenGL
version 1.1 or later.

The following functions retrieve information related to glPushClientAttrib and glPopClientAttrib:

glGet with argument GL_CLIENT_ATTRIB_STACK_DEPTH
glGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition

GL_STACK_OVERFLOW glPushClientAttrib was called while the client-
attribute stack was full.

GL_STACK_UNDERFLOW glPopClientAttrib was called while the client-
attribute stack was empty.

See Also
glColorPointer, glDisableClientState, glEdgeFlagPointer, glEnableClientState, glGet, glGetError,
glIndexPointer, glNormalPointer, glNewList, glPixelStore, glPushAttrib, glTexCoordPointer,
glVertexPointer

glPushMatrix, glPopMatrix
[New - Windows 95, OEM Service Release 2]

The glPushMatrix and glPopMatrix functions push and pop the current matrix stack.

void glPushMatrix(
        void
     );

void glPopMatrix(
        void
     );

Remarks
There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack depth is
at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that mode.

The glPushMatrix function pushes the current matrix stack down by one, duplicating the current matrix.
That is, after a glPushMatrix call, the matrix on the top of the stack is identical to the one below it. The
glPushMatrix function pops the current matrix stack, replacing the current matrix with the one below it on
the stack. Initially, each of the stacks contains one matrix, an identity matrix.

The following functions retrieve information related to glPushMatrix and glPopMatrix:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX
glGet with argument GL_MODELVIEW_STACK_DEPTH
glGet with argument GL_PROJECTION_STACK_DEPTH
glGet with argument GL_TEXTURE_STACK_DEPTH
glGet with argument GL_MAX_MODELVIEW_STACK_DEPTH
glGet with argument GL_MAX_PROJECTION_STACK_DEPTH
glGet with argument GL_MAX_TEXTURE_STACK_DEPTH

Error Codes
It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In either
case, the error flag is set and no other change is made to the OpenGL state.

The following are the error codes generated and their conditions.

Error Code Condition
GL_STACK_OVERFLOW glPushMatrix was called while the

current matrix stack was full.
GL_STACK_UNDERFLOW glPopMatrix was called while the

current matrix stack contained only a
single matrix.

GL_INVALID_OPERATION glPushMatrix was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glFrustum, glLoadIdentity, glLoadMatrix, glMatrixMode, glMultMatrix, glOrtho,
glRotate, glScale, glTranslate, glViewport

glPushName, glPopName
[New - Windows 95, OEM Service Release 2]

The glPushName and glPopName functions push and pop the name stack.

void glPushName(
        GLuint name
     );

Parameters
name

A name that will be pushed onto the name stack.

void glPopName(
        void
     );

Remarks
The glPushName function causes name to be pushed onto the name stack, which is initially empty. The
glPopName function pops one name off the top of the stack. The name stack is used during selection
mode to allow sets of rendering commands to be uniquely identified. It consists of an ordered set of
unsigned integers.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName or
glPopName while the render mode is not GL_SELECT are ignored.

The following functions retrieve information related to glPushName and glPopName:

glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH

Error Codes
It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error to
manipulate the name stack between a call to glBegin and the corresponding call to glEnd. In any of
these cases, the error flag is set and no other change is made to the OpenGL state.

The following are the error codes generated and their conditions.

Error Code Condition
GL_STACK_OVERFLOW glPushName was called while the

name stack was full.
GL_STACK_UNDERFLOW glPopName was called while the

name stack was empty.
GL_INVALID_OPERATION glPushName or glPopName was

called between a call to glBegin and
the corresponding call to glEnd.

See Also
glBegin, glEnd, glInitNames, glLoadName, glRenderMode, glSelectBuffer

 glRasterPos
[New - Windows 95, OEM Service Release 2]

glRasterPos2d, glRasterPos2f, glRasterPos2i, glRasterPos2s, glRasterPos3d, glRasterPos3f,
glRasterPos3i, glRasterPos3s, glRasterPos4d, glRasterPos4f, glRasterPos4i, glRasterPos4s,
glRasterPos2dv, glRasterPos2fv, glRasterPos2iv, glRasterPos2sv, glRastePos3dv,
glRasterPos3fv, glRasterPos3iv, glRasterPos3sv, glRasterPos4dv, glRasterPos4fv,
glRasterPos4iv, glRasterPos4sv

These functions specify the raster position for pixel operations.

void glRasterPos2d(
        GLdouble x,
        GLdouble y
     );

void glRasterPos2f(
        GLfloat x,
        GLfloat y
     );

void glRasterPos2i(
        GLint x,
        GLint y
     );

void glRasterPos2s(
        GLshort x,
        GLshort y
     );

void glRasterPos3d(
        GLdouble x,
        GLdouble y,
        GLdouble z
     );

void glRasterPos3f(
        GLfloat x,
        GLfloat y,
        GLfloat z
     );

void glRasterPos3i(
        GLint x,
        GLint y,
        GLint z
     );

void glRasterPos3s(
        GLshort x,
        GLshort y,
        GLshort z
     );

void glRasterPos4d(
        GLdouble x,

        GLdouble y,
        GLdouble z,
        GLdouble w
     );

void glRasterPos4f(
        GLfloat x,
        GLfloat y,
        GLfloat z,
        GLfloat w
     );

void glRasterPos4i(
        GLint x,
        GLint y,
        GLint z,
        GLint w
     );

void glRasterPos4s(
        GLshort x,
        GLshort y,
        GLshort z,
        GLshort w
     );

Parameters
x, y, z, w

The x, y, z, and w object coordinates (if present) for the raster position.

void glRasterPos2dv(
        const GLdouble *v
     );

void glRasterPos2fv(
        const GLfloat *v
     );

void glRasterPos2iv(
        const GLint *v
     );

void glRasterPos2sv(
        const GLshort *v
     );

void glRasterPos3dv(
        const GLdouble *v
     );

void glRasterPos3fv(
        const GLfloat *v
     );

void glRasterPos3iv(
        const GLint *v
     );

void glRasterPos3sv(

        const GLshort *v
     );

void glRasterPos4dv(
        const GLdouble *v
     );

void glRasterPos4fv(
        const GLfloat *v
     );

void glRasterPos4iv(
        const GLint *v
     );

void glRasterPos4sv(
        const GLshort *v
     );

Parameters
v

A pointer to an array of two, three, or four elements, specifying x, y, z, and w coordinates,
respectively.

Remarks
OpenGL maintains a 3-D position in window coordinates. This position, called the raster position, is
maintained with subpixel accuracy. It is used to position pixel and bitmap write operations. See glBitmap,
glDrawPixels, and glCopyPixels.

The current raster position consists of three window coordinates (x, y, z), a clip coordinate w value, an
eye coordinate distance, a valid bit, and associated color data and texture coordinates. The w coordinate
is a clip coordinate, because w is not projected to window coordinates. The glRasterPos4 function
specifies object coordinates x, y, z, and w explicitly. The glRasterPos3 function specifies object
coordinates x, y, and z explicitly, while w is implicitly set to one. The glRasterPos2 function uses the
argument values for x and y while implicitly setting z and w to zero and one.

The object coordinates presented by glRasterPos are treated just like those of a glVertex command.
They are transformed by the current modelview and projection matrices and passed to the clipping stage.
If the vertex is not culled, then it is projected and scaled to window coordinates, which become the new
current raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is
culled, then the valid bit is cleared and the current raster position and associated color and texture
coordinates are undefined.

The current raster position also includes some associated color data and texture coordinates. If lighting is
enabled, then GL_CURRENT_RASTER_COLOR, in RGBA mode, or the
GL_CURRENT_RASTER_INDEX, in color-index mode, is set to the color produced by the lighting
calculation (see glLight, glLightModel, and glShadeModel). If lighting is disabled, current color (in
RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color-index mode, state variable
GL_CURRENT_INDEX) is used to update the current raster color.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions
(see glTexGen). Finally, the distance from the origin of the eye coordinate system to the vertex, as
transformed by only the modelview matrix, replaces GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0,0,0,1), the current raster distance is 0, the valid bit is set, the
associated RGBA color is (1,1,1,1), the associated color index is 1, and the associated texture

coordinates are (0, 0, 0, 1). In RGBA mode, GL_CURRENT_RASTER_INDEX is always 1; in color-index
mode, the current raster RGBA color always maintains its initial value.

Note    The raster position is modified both by glRasterPos and by glBitmap.

When the raster position coordinates are invalid, drawing commands that are based on the raster
position are ignored (that is, they do not result in changes to the OpenGL state).

The following functions retrieve information related to glRasterPos:

glGet with argument GL_CURRENT_RASTER_POSITION
glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_CURRENT_RASTER_DISTANCE
glGet with argument GL_CURRENT_RASTER_COLOR
glGet with argument GL_CURRENT_RASTER_INDEX
glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glRasterPos was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glBitmap, glCopyPixels, glDrawPixels, glEnd, glLight, glLightModel, glShadeModel,
glTexCoord, glTexGen, glVertex

glReadBuffer   

[New - Windows 95, OEM Service Release 2]

The glReadBuffer function selects a color buffer source for pixels.

void glReadBuffer(
        GLenum mode
     );

Parameters
mode

A color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT,
GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_AUXi, where i is between
0 and GL_AUX_BUFFERS -1.

Remarks
The glReadBuffer function specifies a color buffer as the source for subsequent glReadPixels and
glCopyPixels commands. The mode parameter accepts one of twelve or more predefined values.
(GL_AUX0 through GL_AUX3 are always defined.) In a fully configured system, GL_FRONT, GL_LEFT,
and GL_FRONT_LEFT all name the front-left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front-
right buffer, and GL_BACK_LEFT and GL_BACK name the back-left buffer.

Nonstereo double-buffered configurations have only a front-left and a back-left buffer. Single-buffered
configurations have a front-left and a front-right buffer if stereo, and only a front-left buffer if nonstereo. It
is an error to specify a nonexistent buffer to glReadBuffer.

By default, mode is GL_FRONT in single-buffered configurations, and GL_BACK in double-buffered
configurations.

The following function retrieves information related to glReadBuffer:

glGet with argument GL_READ_BUFFER

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not one of the twelve (or

more) accepted values.
GL_INVALID_OPERATION mode specified a buffer that does not

exist.
GL_INVALID_OPERATION glReadBuffer was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glCopyPixels, glDrawBuffer, glEnd, glReadPixels

glReadPixels   

[New - Windows 95, OEM Service Release 2]

The glReadPixels function reads a block of pixels from the frame buffer.

void glReadPixels(
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height,
        GLenum format,
        GLenum type,
        GLvoid *pixels
     );

Parameters
x, y

The window coordinates of the first pixel that is read from the frame buffer. This location is the lower-
left corner of a rectangular block of pixels.

width, height
The dimensions of the pixel rectangle. The width and height parameters of one correspond to a single
pixel.

format
The format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX

Color indexes are read from the color buffer selected by glReadBuffer. Each index is converted to
fixed point, shifted left or right depending on the value and sign of GL_INDEX_SHIFT, and added
to GL_INDEX_OFFSET. If GL_MAP_COLOR is GL_TRUE, indexes are replaced by their
mappings in the table GL_PIXEL_MAP_I_TO_I.

GL_STENCIL_INDEX
Stencil values are read from the stencil buffer. Each index is converted to fixed point, shifted left or
right depending on the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If
GL_MAP_STENCIL is GL_TRUE, indexes are replaced by their mappings in the table
GL_PIXEL_MAP_S_TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating point such
that the minimum depth value maps to 0.0 and the maximum value maps to 1.0. Each component
is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and finally clamped to the
range [0,1].

GL_RED
GL_GREEN
GL_BLUE
GL_ALPHA
GL_RGB
GL_RGBA
GL_BGR_EXT
GL_BGRA_EXT
GL_LUMINANCE
GL_LUMINANCE_ALPHA

Processing differs depending on whether color buffers store color indexes or RGBA color
components. If color indexes are stored, they are read from the color buffer selected by
glReadBuffer. Each index is converted to fixed point, shifted left or right depending on the value
and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indexes are then replaced by

the red, green, blue, and alpha values obtained by indexing the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables.
If RGBA color components are stored in the color buffers, they are read from the color buffer
selected by glReadBuffer. Each color component is converted to floating point such that zero
intensity maps to 0.0 and full intensity maps to 1.0. Each component is then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is GL_RED, GL_GREEN, GL_BLUE, and
GL_ALPHA. Each component is clamped to the range [0,1]. Finally, if GL_MAP_COLOR is
GL_TRUE, each color component c is replaced by its mapping in the table
GL_PIXEL_MAP_c_TO_c, where c again is GL_RED, GL_GREEN, GL_BLUE, and GL_ALPHA.
Each component is scaled to the size of its corresponding table before the lookup is performed.
Finally, unneeded data is discarded. For example, GL_RED discards the green, blue, and alpha
components, while GL_RGB discards only the alpha component. GL_LUMINANCE computes a
single component value as the sum of the red, green, and blue components, and
GL_LUMINANCE_ALPHA does the same, while keeping alpha as a second value.

type
The data type of the pixel data. Must be one of the following values:

Type Index Mask Component
Conversion

GL_UNSIGNED_BYTE 2^8-1 (2^8-1)c
GL_BYTE 2^7-1 [2^7-1]c-1]/2
GL_BITMAP 1 1
GL_UNSIGNED_SHORT 2^16-1 (2^16-1) c
GL_SHORT 2^15-1 [(2^15-1) c-1] / 2
GL_UNSIGNED_INT 2^32-1 (2^32-1) c
GL_INT 2^31-1 [(2^31-1) c-1] / 2
GL_FLOAT none c

pixels
Returns the pixel data.

Remarks
The glReadPixels function returns pixel data from the frame buffer, starting with the pixel whose lower-
left corner is at location (x, y), into client memory starting at location pixels. Several parameters control
the processing of the pixel data before it is placed into client memory. These parameters are set with
three commands: glPixelStore, glPixelTransfer, and glPixelMap. This topic describes the effects on
glReadPixels of most, but not all of the parameters specified by these three commands.

The glReadPixels function returns values from each pixel with lower-left corner at (x + i, y + j) for 0 £ i <
width and 0 £ j < height. This pixel is said to be the ith pixel in the jth row. Pixels are returned in row
order from the lowest to the highest row, left to right in each row.

The shift, scale, bias, and lookup factors described above are all specified by glPixelTransfer. The
lookup table contents are specified by glPixelMap.

The final step involves converting the indexes or components to the proper format, as specified by type. If
format is GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not GL_FLOAT, each index is masked
with the mask value given in the following table. If type is GL_FLOAT, then each integer index is
converted to single-precision floating-point format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR_EXT,
GL_BGRA_EXT, GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each
component is multiplied by the multiplier shown in the preceding table. If type is GL_FLOAT, then each
component is passed as is (or converted to the client's single-precision floating-point format if it is different

from the one used by OpenGL).

Return values are placed in memory as follows. If format is GL_COLOR_INDEX, GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, or GL_LUMINANCE, a
single value is returned and the data for the ith pixel in the jth row is placed in location (j) width + i.
GL_RGB and GL_BGR_EXT return three values, GL_RGBA and GL_BGRA_EXT return four values, and
GL_LUMINANCE_ALPHA returns two values for each pixel, with all values corresponding to a single pixel
occupying contiguous space in pixels. Storage parameters set by glPixelStore, such as
GL_PACK_SWAP_BYTES and GL_PACK_LSB_FIRST, affect the way that data is written into memory.
See glPixelStore for a description.

Values for pixels that lie outside the window connected to the current OpenGL context are undefined.

If an error is generated, no change is made to the contents of pixels.

The following function retrieves information related to glReadPixels:

glGet with argument GL_INDEX_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM format or type was not an accepted

value.
GL_INVALID_VALUE either width or height was negative.
GL_INVALID_OPERATION format was GL_COLOR_INDEX and

the color buffers stored RGBA or
BGRA color components.

GL_INVALID_OPERATION format was GL_STENCIL_INDEX and
there was no stencil buffer.

GL_INVALID_OPERATION format was
GL_DEPTH_COMPONENT and there
was no depth buffer.

GL_INVALID_OPERATION glReadPixels was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glCopyPixels, glDrawPixels, glEnd, glPixelMap, glPixelStore, glPixelTransfer,
glReadBuffer

glRectd, glRectf, glRecti, glRects,
glRectdv, glRectfv, glRectiv, glRectsv

[New - Windows 95, OEM Service Release 2]

These functions draw a rectangle.

void glRectd(
        GLdouble x1,
        GLdouble y1,
        GLdouble x2,
        GLdouble y2
     );

void glRectf(
        GLfloat x1,
        GLfloat y1,
        GLfloat x2,
        GLfloat y2
     );

void glRecti(
        GLint x1,
        GLint y1,
        GLint x2,
        GLint y2
     );

void glRects(
        GLshort x1,
        GLshort y1,
        GLshort x2,
        GLshort y2
     );

Parameters
x1, y1

One vertex of a rectangle.
x2, y2

The opposite vertex of the rectangle.

void glRectdv(
        const GLdouble *v1,
        const GLdouble *v2
     );

void glRectfv(
        const GLfloat *v1,
        const GLfloat *v2
     );

void glRectiv(
        const GLint *v1,
        const GLint *v2
     );

void glRectsv(
        const GLshort *v1,
        const GLshort *v2
     );

Parameters
v1

A pointer to one vertex of a rectangle.
v2

A pointer to the opposite vertex of the rectangle.

Remarks
The glRect function supports efficient specification of rectangles as two corner points. Each rectangle
command takes four arguments, organized either as two consecutive pairs of (x, y) coordinates, or as two
pointers to arrays, each containing an (x,y) pair. The resulting rectangle is defined in the z = 0 plane.

The glRect(x1, y1, x2, y2) function is exactly equivalent to the following sequence:

glBegin(GL_POLYGON);
glVertex2(x1, y1);
glVertex2(x2, y1);
glVertex2(x2, y2);
glVertex2(x1, y2);
glEnd();

Notice that if the second vertex is above and to the right of the first vertex, the rectangle is constructed
with a counterclockwise winding.

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glRect was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glVertex

glRenderMode   

[New - Windows 95, OEM Service Release 2]

The glRenderMode function sets the rasterization mode.

GLint glRenderMode(
        GLenum mode
     );

Parameters
mode

The rasterization mode. The following three values are accepted. The default value is GL_RENDER.
GL_RENDER

Render mode. Primitives are rasterized, producing pixel fragments, which are written into the frame
buffer. This is the normal mode and also the default mode.

GL_SELECT
Selection mode. No pixel fragments are produced, and no change to the frame buffer contents is
made. Instead, a record of the names of primitives that would have been drawn if the render mode
was GL_RENDER is returned in a select buffer, which must be created (see glSelectBuffer)
before selection mode is entered.

GL_FEEDBACK
Feedback mode. No pixel fragments are produced, and no change to the frame buffer contents is
made. Instead, the coordinates and attributes of vertices that would have been drawn had the
render mode been GL_RENDER are returned in a feedback buffer, which must be created (see
glFeedbackBuffer) before feedback mode is entered.

Remarks
The glRenderMode function takes one argument, mode, which can assume one of three predefined
values above.

The return value of the glRenderMode function is determined by the render mode at the time
glRenderMode is called, rather than by mode. The values returned for the three render modes are as
follows:

GL_RENDER
Zero.

GL_SELECT
The number of hit records transferred to the select buffer.

GL_FEEDBACK
The number of values (not vertices) transferred to the feedback buffer.

Refer to glSelectBuffer and glFeedbackBuffer for more details concerning selection and feedback
operation.

If an error is generated, glRenderMode returns zero regardless of the current render mode.

The following function retrieves information related to glRenderMode:

glGet with argument GL_RENDER_MODE

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was not one of the three

accepted values.
GL_INVALID_OPERATION glSelectBuffer was called while the

render mode was GL_SELECT, or if
glRenderMode was called with
argument GL_SELECT before
glSelectBuffer was called at least
once.

GL_INVALID_OPERATION glFeedbackBuffer was called while
the render mode was
GL_FEEDBACK, or if glRenderMode
was called with argument
GL_FEEDBACK before
glFeedbackBuffer was called at least
once.

 GL_INVALID_OPERATION glRenderMode was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glFeedbackBuffer, glInitNames, glLoadName, glPassThrough, glPushName,
glSelectBuffer

glRotated, glRotatef
[New - Windows 95, OEM Service Release 2]

The glRotated and glRotatef functions multiply the current matrix by a rotation matrix.

void glRotated(
        GLdouble angle,
        GLdouble x,
        GLdouble y,
        GLdouble z
     );

void glRotatef(
        GLfloat angle,
        GLfloat x,
        GLfloat y,
        GLfloat z
     );

Parameters
angle

The angle of rotation, in degrees.
x, y, z

The x, y, and z coordinates of a vector, respectively.

Remarks
The glRotate function computes a matrix that performs a counterclockwise rotation of angle degrees
about the vector from the origin through the point (x, y, z).

The current matrix (see glMatrixMode) is multiplied by this rotation matrix, with the product replacing the
current matrix. That is, if M is the current matrix and R is the translation matrix, then M is replaced with
M·R.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is
called are rotated. Use glPushMatrix and glPopMatrix to save and restore the unrotated coordinate
system.

The following functions retrieve information related to glRotate:

glGet with argument GL_RENDER_MODE
glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glRotate was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glMatrixMode, glMultMatrix, glPushMatrix, glScale, glTranslate

glScaled, glScalef
[New - Windows 95, OEM Service Release 2]

The glScaled and glScalef functions multiply the current matrix by a general scaling matrix.

void glScaled(
        GLdouble x,
        GLdouble y,
        GLdouble z
     );

void glScalef(
        GLfloat x,
        GLfloat y,
        GLfloat z
     );

Parameters
x, y, z

Scale factors along the x, y, and z axes, respectively.

Remarks
The glScale function produces a general scaling along the x, y, and z axes. The three arguments indicate
the desired scale factors along each of the three axes. The resulting matrix is

{ewc msdncd, EWGraphic, bsd23545 20 /a "SDK.BMP"}

The current matrix (see glMatrixMode) is multiplied by this scale matrix, with the product replacing the
current matrix. That is, if M is the current matrix and S is the scale matrix, then M is replaced with M·S.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glScale is
called are scaled. Use glPushMatrix and glPopMatrix to save and restore the unscaled coordinate
system.

If scale factors other than 1.0 are applied to the modelview matrix and lighting is enabled, automatic
normalization of normals should probably also be enabled (glEnable and glDisable with argument
GL_NORMALIZE).

The following functions retrieve information related to glScale:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glScale was called between a call to

glBegin and the corresponding call to
glEnd.

See Also
glBegin, glEnd, glMatrixMode, glMultMatrix, glPushMatrix, glRotate, glTranslate

glScissor   

[New - Windows 95, OEM Service Release 2]

The glScissor function defines the scissor box.

void glScissor(
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height
     );

Parameters
x, y

The lower-left corner of the scissor box. Initially (0,0).
width, height

The width and height of the scissor box. When an OpenGL context is first attached to a window, width
and height are set to the dimensions of that window.

Remarks
The glScissor function defines a rectangle, called the scissor box, in window coordinates. The first two
parameters, x and y, specify the lower-left corner of the box. The width and height parameters specify the
width and height of the box.

The scissor test is enabled and disabled using glEnable and glDisable with argument
GL_SCISSOR_TEST. While the scissor test is enabled, only pixels that lie within the scissor box can be
modified by drawing commands. Window coordinates have integer values at the shared corners of frame
buffer pixels, so glScissor(0,0,1,1) allows only the lower-left pixel in the window to be modified, and
glScissor(0,0,0,0) disallows modification to all pixels in the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

The following functions retrieve information related to glScissor:

glGet with argument GL_SCISSOR_BOX
glIsEnabled with argument GL_SCISSOR_TEST

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE either width or height was negative.
GL_INVALID_OPERATION glScissor was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnable, glEnd, glIsEnabled, glViewport

glSelectBuffer   

[New - Windows 95, OEM Service Release 2]

The glSelectBuffer function establishes a buffer for selection mode values.

void glSelectBuffer(
        GLsizei size,
        GLuint *buffer
     );

Parameters
size

The size of buffer.
buffer

Returns the selection data.

Remarks
The glSelectBuffer function has two parameters: buffer is a pointer to an array of unsigned integers, and
size indicates the size of the array. The buffer parameter returns values from the name stack (see
glInitNames, glLoadName, glPushName) when the rendering mode is GL_SELECT (see
glRenderMode). The glSelectBuffer function must be issued before selection mode is enabled, and it
must not be issued while the rendering mode is GL_SELECT.

Selection is used by a programmer to determine which primitives are drawn into some region of a window.
The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive intersects the
clip volume defined by the viewing frustum and the user-defined clipping planes, this primitive causes a
selection hit. (With polygons, no hit occurs if the polygon is culled.) When a change is made to the name
stack, or when glRenderMode is called, a hit record is copied to buffer if any hits have occurred since the
last such event (either a name stack change or a glRenderMode call). The hit record consists of the
number of names in the name stack at the time of the event; followed by the minimum and maximum
depth values of all vertices that hit since the previous event; followed by the name stack contents, bottom
name first.

Returned depth values are mapped such that the largest unsigned integer value corresponds to window
coordinate depth 1.0, and zero corresponds to window coordinate depth 0.0.

An internal index into buffer is reset to zero whenever selection mode is entered. Each time a hit record is
copied into buffer, the index is incremented to point to the cell just past the end of the block of
names¾that is, to the next available cell. If the hit record is larger than the number of remaining locations
in buffer, as much data as can fit is copied, and the overflow flag is set. If the name stack is empty when a
hit record is copied, that record consists of zero followed by the minimum and maximum depth values.

Selection mode is exited by calling glRenderMode with an argument other than GL_SELECT. Whenever
glRenderMode is called while the render mode is GL_SELECT, it returns the number of hit records
copied to buffer, resets the overflow flag and the selection buffer pointer, and initializes the name stack to
be empty. If the overflow bit was set when glRenderMode was called, a negative hit record count is
returned.

The contents of buffer are undefined until glRenderMode is called with an argument other than
GL_SELECT.

The glBegin/glEnd primitives and calls to glRasterPos can result in hits.

The following function retrieves information related to glSelectBuffer:

glGet with argument GL_NAME_STACK_DEPTH

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE size was negative.
GL_INVALID_OPERATION glSelectBuffer was called while the

render mode was GL_SELECT, or if
glRenderMode was called with
argument GL_SELECT before
glSelectBuffer was called at least
once.

GL_INVALID_OPERATION glSelectBuffer was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glEnd, glFeedbackBuffer, glInitNames, glLoadName, glPushName, glRenderMode

glShadeModel   

[New - Windows 95, OEM Service Release 2]

The glShadeModel function selects flat or smooth shading.

void glShadeModel(

        GLenum mode
     );

Parameters
mode

A symbolic value representing a shading technique. Accepted values are GL_FLAT and
GL_SMOOTH. The default is GL_SMOOTH.

Remarks
OpenGL primitives can have either flat or smooth shading. Smooth shading, the default, causes the
computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning different
colors to each resulting pixel fragment. Flat shading selects the computed color of just one vertex and
assigns it to all the pixel fragments generated by rasterizing a single primitive. In either case, the
computed color of a vertex is the result of lighting, if lighting is enabled, or it is the current color at the time
the vertex was specified, if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Counting vertices and primitives from one,
starting when glBegin is issued, each flat-shaded line segment i is given the computed color of vertex i +
1, its second vertex. Counting similarly from one, each flat-shaded polygon is given the computed color of
the vertex listed in the following table. This is the last vertex to specify the polygon in all cases except
single polygons, where the first vertex specifies the flat-shaded color.

Primitive Type of Polygon i Vertex
Single polygon (iº1) 1
Triangle strip i + 2
Triangle fan i + 2
Independent triangle 3i
Quad strip 2i + 2
Independent quad 4i

Flat and smooth shading are specified by glShadeModel with mode set to GL_FLAT and GL_SMOOTH,
respectively.

The following function retrieves information related to glShadeModel:

glGet with argument GL_SHADE_MODEL

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM mode was any value other than

GL_FLAT or GL_SMOOTH.
GL_INVALID_OPERATION glShadeModel was called between a

call to glBegin and the corresponding

call to glEnd.

See Also
glBegin, glColor, glEnd, glLight, glLightModel

glStencilFunc   

[New - Windows 95, OEM Service Release 2]

The glStencilFunc function sets the function and reference value for stencil testing.

void glStencilFunc(
        GLenum func,
        GLint ref,
        GLuint mask
     );

Parameters
func

The test function. The following eight tokens are valid:
GL_NEVER

Always fails.
GL_LESS

Passes if (ref & mask) < (stencil & mask).
GL_LEQUAL

Passes if (ref & mask) £ (stencil & mask).
GL_GREATER

Passes if (ref & mask) > (stencil & mask).
GL_GEQUAL

Passes if (ref & mask) ³ (stencil & mask).
GL_EQUAL

Passes if (ref & mask) = (stencil & mask).
GL_NOTEQUAL

Passes if (ref & mask) ¹ (stencil & mask).
GL_ALWAYS

Always passes.
ref

The reference value for the stencil test. The ref parameter is clamped to the range [0,2^n - 1], where n
is the number of bitplanes in the stencil buffer.

mask
A mask that is ANDed with both the reference value and the stored stencil value when the test is
done.

Remarks
Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil
planes using OpenGL drawing primitives, then render geometry and images, using the stencil planes to
mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve
special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the
reference value and the value in the stencil buffer. The test is enabled by glEnable and glDisable with
argument GL_STENCIL. Actions taken based on the outcome of the stencil test are specified with
glStencilOp.

The func parameter is a symbolic constant that determines the stencil comparison function. It accepts one
of the eight values shown above. The ref parameter is an integer reference value that is used in the
stencil comparison. It is clamped to the range [0,2^n - 1], where n is the number of bitplanes in the stencil
buffer. The mask parameter is bitwise ANDed with both the reference value and the stored stencil value,

with the ANDed values participating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the preceding list shows
the effect of each comparison function that can be specified by func. Only if the comparison succeeds is
the pixel passed through to the next stage in the rasterization process (see glStencilOp). All tests treat
stencil values as unsigned integers in the range [0,2^n - 1], where n is the number of bitplanes in the
stencil buffer.

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is
as if the stencil test always passes.

The following functions retrieve information related to glStencilFunc:

glGet with argument GL_STENCIL_FUNC
glGet with argument GL_STENCIL_VALUE_MASK
glGet with argument GL_STENCIL_REF
glGet with argument GL_STENCIL_BITS
glIsEnabled with argument GL_STENCIL_TEST

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM func was not one of the eight

accepted values.
GL_INVALID_OPERATION glStencilFunc was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glAlphaFunc, glBegin, glBlendFunc, glDepthFunc, glEnable, glEnd, glIsEnabled, glLogicOp,
glStencilOp

glStencilMask   

[New - Windows 95, OEM Service Release 2]

The glStencilMask function controls the writing of individual bits in the stencil planes.

void glStencilMask(
        GLuint mask
     );

Parameters
mask

A bit mask to enable and disable writing of individual bits in the stencil planes. Initially, the mask is all
ones.

Remarks
The glStencilMask function controls the writing of individual bits in the stencil planes. The least
significant n bits of mask, where n is the number of bits in the stencil buffer, specify a mask. Wherever a
one appears in the mask, the corresponding bit in the stencil buffer is made writable. Where a zero
appears, the bit is write-protected. Initially, all bits are enabled for writing.

The following functions retrieve information related to glStencilMask:

glGet with argument GL_STENCIL_WRITEMASK
glGet with argument GL_STENCIL_BITS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glStencilMask was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glColorMask, glDepthMask, glEnd, glIndexMask, glStencilFunc, glStencilOp

glStencilOp   

[New - Windows 95, OEM Service Release 2]

The glStencilOp function sets the stencil test actions.

void glStencilOp(
        GLenum fail,
        GLenum zfail,
        GLenum zpass
     );

Parameters
fail

The action to take when the stencil test fails. The following six symbolic constants are accepted:
GL_KEEP

Keeps the current value.
GL_ZERO

Sets the stencil buffer value to zero.
GL_REPLACE

Sets the stencil buffer value to ref, as specified by glStencilFunc.
GL_INCR

Increments the current stencil buffer value. Clamps to the maximum representable unsigned value.
GL_DECR

Decrements the current stencil buffer value. Clamps to zero.
GL_INVERT

Bitwise inverts the current stencil buffer value.
zfail

Stencil action when the stencil test passes, but the depth test fails. Accepts the same symbolic
constants as fail.

zpass
Stencil action when both the stencil test and the depth test pass, or when the stencil test passes and
either there is no depth buffer or depth testing is not enabled. Accepts the same symbolic constants
as fail.

Remarks
Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil
planes using OpenGL drawing primitives, then render geometry and images, using the stencil planes to
mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve
special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the value
in the stencil buffer and a reference value. The test is enabled with glEnable and glDisable calls with
argument GL_STENCIL, and controlled with glStencilFunc.

The glStencilOp function takes three arguments that indicate what happens to the stored stencil value
while stenciling is enabled. If the stencil test fails, no change is made to the pixel's color or depth buffers,
and fail specifies what happens to the stencil buffer contents.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values are
clamped to 0 and 2^n - 1, where n is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions should subsequent depth buffer

tests succeed (zpass) or fail (zfail). (See glDepthFunc.) They are specified using the same six symbolic
constants as fail. Note that zfail is ignored when there is no depth buffer, or when the depth buffer is not
enabled. In these cases, fail and zpass specify stencil action when the stencil test fails and passes,
respectively.

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is as
if the stencil tests always pass, regardless of any call to glStencilOp.

The following functions retrieve information related to glStencilOp:

glGet with argument GL_STENCIL_FAIL
glGet with argument GL_STENCIL_PASS_DEPTH_PASS
glGet with argument GL_STENCIL_PASS_DEPTH_FAIL
glGet with argument GL_STENCIL_BITS
glIsEnabled with argument GL_STENCIL_TEST

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM fail, zfail, or zpass was any value

other than the six defined constant
values.

GL_INVALID_OPERATION glStencilOp was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glAlphaFunc, glBegin, glBlendFunc, glDepthFunc, glEnable, glEnd, glIsEnabled, glLogicOp,
glStencilFunc

 glTexCoord
[New - Windows 95, OEM Service Release 2]

glTexCoord1d, glTexCoord1f, glTexCoord1i, glTexCoord1s, glTexCoord2d, glTexCoord2f,
glTexCoord2i, glTexCoord2s, glTexCoord3d, glTexCoord3f, glTexCoord3i, glTexCoord3s,
glTexCoord4d, glTexCoord4f, glTexCoord4i, glTexCoord4s, glTexCoord1dv, glTexCoord1fv,
glTexCoord1iv, glTexCoord1sv, glTexCoord2dv, glTexCoord2fv, glTexCoord2iv, glTexCoord2sv,
glTexCoord3dv, glTexCoord3fv, glTexCoord3iv, glTexCoord3sv, glTexCoord4dv, glTexCoord4fv,
glTexCoord4iv, glTexCoord4sv

These functions set the current texture coordinates.

void glTexCoord1d(
        GLdouble s
     );

void glTexCoord1f(
        GLfloat s
     );

void glTexCoord1i(
        GLint s
     );

void glTexCoord1s(
        GLshort s
     );

void glTexCoord2d(
        GLdouble s,
        GLdouble t
     );

void glTexCoord2f(
        GLfloat s,
        GLfloat t
     );

void glTexCoord2i(
        GLint s,
        GLint t
     );

void glTexCoord2s(
        GLshort s,
        GLshort t
     );

void glTexCoord3d(
        GLdouble s,
        GLdouble t,
        GLdouble r
     );

void glTexCoord3f(
        GLfloat s,
        GLfloat t,
        GLfloat r

     );

void glTexCoord3i(
        GLint s,
        GLint t,
        GLint r
     );

void glTexCoord3s(
        GLshort s,
        GLshort t,
        GLshort r
     );

void glTexCoord4d(
        GLdouble s,
        GLdouble t,
        GLdouble r,
        GLdouble q
     );

void glTexCoord4f(
        GLfloat s,
        GLfloat t,
        GLfloat r,
        GLfloat q
     );

void glTexCoord4i(
        GLint s,
        GLint t,
        GLint r,
        GLint q
     );

void glTexCoord4s(
        GLshort s,
        GLshort t,
        GLshort r,
        GLshort q
     );

Parameters
s, t, r, q

The s, t, r, and q texture coordinates. Not all parameters are present in all forms of the command.

void glTexCoord1dv(
        const GLdouble *v
     );

void glTexCoord1fv(
        const GLfloat *v
     );

void glTexCoord1iv(
        const GLint *v
     );

void glTexCoord1sv(

        const GLshort *v
     );

void glTexCoord2dv(
        const GLdouble *v
     );

void glTexCoord2fv(
        const GLfloat *v
     );

void glTexCoord2iv(
        const GLint *v
     );

void glTexCoord2sv(
        const GLshort *v
     );

void glTexCoord3dv(
        const GLdouble *v
     );

void glTexCoord3fv(
        const GLfloat *v
     );

void glTexCoord3iv(
        const GLint *v
     );

void glTexCoord3sv(
        const GLshort *v
     );

void glTexCoord4dv(
        const GLdouble *v
     );

void glTexCoord4fv(
        const GLfloat *v
     );

void glTexCoord4iv(
        const GLint *v
     );

void glTexCoord4sv(
        const GLshort *v
     );

Parameters
v

A pointer to an array of one, two, three, or four elements, which in turn specify the s, t, r, and q texture
coordinates.

Remarks
The glTexCoord function sets the current texture coordinates that are part of the data that is associated
with polygon vertices.

The glTexCoord function specifies texture coordinates in one, two, three, or four dimensions. The
glTexCoord1 function sets the current texture coordinates to (s, 0, 0, 1); a call to glTexCoord2 sets them
to (s, t, 0, 1). Similarly, glTexCoord3 specifies the texture coordinates as (s, t, r, 1), and glTexCoord4
defines all four components explicitly as (s, t, r, q).

The current texture coordinates can be updated at any time. In particular, glTexCoord can be called
between a call to glBegin and the corresponding call to glEnd.

The following function retrieves information related to glTexCoord:

glGet with argument GL_CURRENT_TEXTURE_COORDS

See Also
glVertex

glTexCoordPointer
[New - Windows 95, OEM Service Release 2]

The glTexCoordPointer function defines an array of texture coordinates.

void glTexCoordPointer(
        GLint size,
        GLenum type,
        GLsizei stride,
        GLsizei count,
        const GLvoid *pointer
     );

Parameters
size

The number of coordinates per array element. The value of size must be 1, 2, 3, or 4.
type

The data type of each texture coordinate in the array using the following symbolic constants:
GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE.

stride
The byte offset between consecutive array elements. When stride is zero, the array elements are
tightly packed in the array.

count
The number of array elements, counting from the first, that are static.

pointer
A pointer to the first coordinate of the first element in the array.

Remarks
The glTexCoordPointer function specifies the location and data of an array of texture coordinates to use
when rendering.The size parameter specifies the number of coordinates used for each element of the
array.The type parameter specifies the data type of each texture coordinate. The stride parameter
determines the byte offset from one array element to the next, enabling the packing of vertices and
attributes in a single array or storage in separate arrays. In some implementations, storing the vertices
and attributes in a single array can be more efficient than using separate arrays. Starting from the first
array element, count indicates the total number of static elements. Your application can modify static
elements, but once the elements are modified, the application must explicitly specify the array again
before using the array for any rendering. Non-static array elements are not accessed until you call
glDrawArrays or glArrayElement.

A texture coordinate array is enabled when you specify the GL_TEXTURE_COORD_ARRAY constant
with glEnableClientState. When enabled, glDrawArrays and glArrayElement use the texture
coordinate array. By default the texture coordinate array is disabled.

You cannot include glTexCoordPointer in display lists.

When you specify a texture coordinate array using glTexCoordPointer, the values of all the function's
texture coordinate array parameters are saved in a client-side state, and static array elements can be
cached. Because the texture coordinate array parameters are client-side state, their values are not saved
or restored by glPushAttrib and glPopAttrib.

Although no error is generated when you call glTexCoordPointer within glBegin and glEnd pairs, the
results are undefined.

The following functions retrieve information related to glTexCoordPointer:

glIsEnabled with argument GL_TEXTURE_COORD_ARRAY
glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE
glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE
glGet with argument GL_TEXTURE_COORD_ARRAY_COUNT
glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE
glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE size was not 1, 2, 3, or 4.
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE stride or count was negative.

See Also
glArrayElement, glColorPointer, glDrawArrays, glEdgeFlagPointer, glGetPointerv, glGetString,
glIndexPointer, glIsEnabled, glNormalPointer, glVertexPointer

glTexEnvf, glTexEnvi, glTexEnvfv,
glTexEnviv

[New - Windows 95, OEM Service Release 2]

These functions set texture environment parameters.

void glTexEnvf(
        GLenum target,
        GLenum pname,
        GLfloat param
     );

void glTexEnvi(
        GLenum target,
        GLenum pname,
        GLint param
     );

Parameters
target

A texture environment. Must be GL_TEXTURE_ENV.
pname

The symbolic name of a single-valued texture environment parameter. Must be
GL_TEXTURE_ENV_MODE.

param
A single symbolic constant, one of GL_MODULATE, GL_DECAL, or GL_BLEND.

void glTexEnvfv(
        GLenum target,
        GLenum pname,
        const GLfloat *params
     );

void glTexEnviv(
        GLenum target,
        GLenum pname,
        const GLint *params
     );

Parameters
target

A texture environment. Must be GL_TEXTURE_ENV.
pname

The symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

params
A pointer to an array of parameters: either a single symbolic constant or an RGBA color.

Remarks
A texture environment specifies how texture values are interpreted when a fragment is textured. The
target parameter must be GL_TEXTURE_ENV. The pname parameter can be either
GL_TEXTURE_ENV_MODE or GL_TEXTURE_ENV_COLOR.

If pname is GL_TEXTURE_ENV_MODE, then params is (or points to) the symbolic name of a texture
function. Three texture functions are defined: GL_MODULATE, GL_DECAL, and GL_BLEND.

A texture function acts on the fragment to be textured using the texture image value that applies to the
fragment (see glTexParameter) and produces an RGBA color for that fragment. The following table
shows how the RGBA color is produced for each of the three texture functions that can be chosen. C is a
triple of color values (RGB) and A is the associated alpha value. RGBA values extracted from a texture
image are in the range [0,1]. The subscript f refers to the incoming fragment, the subscript t to the texture
image, the subscript c to the texture environment color, and subscript v indicates a value produced by the
texture function.

A texture image can have up to four components per texture element (see glTexImage1D and
glTexImage2D). In a one-component image, L (t) indicates that single component. A two-component
image uses L (t) and A (t) . A three-component image has only a color value, C (t) . A four-component image
has both a color value C (t) and an alpha value A (t) .

{ewc msdncd, EWGraphic, bsd23545 21 /a "SDK.BMP"}

If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an RGBA color
consisting of four values. Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the range
[0,1] when they are specified. C (c) takes these four values.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and GL_TEXTURE_ENV_COLOR defaults to
(0,0,0,0).

The following function retrieves information related to glTexEnv:

glGetTexEnv

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or pname was not one of the

accepted defined values, or when
params should have had a defined
constant value (based on the value of
pname) and did not.

GL_INVALID_OPERATION glTexEnv was called between a call
to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glTexImage1D, glTexImage2D, glTexParameter

 glTexGend, glTexGenf, glTexGeni,
glTexGendv, glTexGenfv, glTexGeniv

[New - Windows 95, OEM Service Release 2]

These functions control the generation of texture coordinates.

void glTexGend(
        GLenum coord,
        GLenum pname,
        GLdouble param
     );

void glTexGenf(
        GLenum coord,
        GLenum pname,
        GLfloat param
     );

void glTexGeni(
        GLenum coord,
        GLenum pname,
        GLint param
     );

Parameters
coord

A texture coordinate. Must be one of the following: GL_S, GL_T, GL_R, or GL_Q.
pname

The symbolic name of the texture-coordinate generation function. Must be
GL_TEXTURE_GEN_MODE.

param
A single-valued texture generation parameter, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or
GL_SPHERE_MAP.

void glTexGendv(
        GLenum coord,
        GLenum pname,
        const GLdouble *params
     );

void glTexGenfv(
        GLenum coord,
        GLenum pname,
        const GLfloat *params
     );

void glTexGeniv(
        GLenum coord,
        GLenum pname,
        const GLint *params
     );

Parameters
coord

A texture coordinate. Must be one of the following: GL_S, GL_T, GL_R, or GL_Q.
pname

The symbolic name of the texture-coordinate generation function or function parameters. Must be
GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.

params
A pointer to an array of texture generation parameters. If pname is GL_TEXTURE_GEN_MODE, then
the array must contain a single symbolic constant, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR,
or GL_SPHERE_MAP. Otherwise, params holds the coefficients for the texture-coordinate generation
function specified by pname.

Remarks
The glTexGen function selects a texture-coordinate generation function or supplies coefficients for one of
the functions. The coord parameter names one of the (s,t,r,q) texture coordinates, and it must be one of
these symbols: GL_S, GL_T, GL_R, or GL_Q. The pname parameter must be one of three symbolic
constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pname is
GL_TEXTURE_GEN_MODE, then params chooses a mode, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, or GL_SPHERE_MAP. If pname is either GL_OBJECT_PLANE or GL_EYE_PLANE,
params contains coefficients for the corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the function

{ewc msdncd, EWGraphic, bsd23545 22 /a "SDK.BMP"}

is used, where g is the value computed for the coordinate named in coord; p (1) , p (2) , p (3) , and p (4) are
the four values supplied in params; and x (o) , y (o) , z (o) , and w (o) are the object coordinates of the vertex.
This function can be used to texture-map terrain using sea level as a reference plane (defined by p (1) , p
(2) , p (3) , and p (4)). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR coordinate
generation function as its distance from sea level; that altitude is used to index the texture image to map
white snow onto peaks and green grass onto foothills, for example.

If the texture generation function is GL_EYE_LINEAR, the function

{ewc msdncd, EWGraphic, bsd23545 23 /a "SDK.BMP"}

is used, where

{ewc msdncd, EWGraphic, bsd23545 24 /a "SDK.BMP"}

and x (e) , y (e) , z (e) , and w (e) are the eye coordinates of the vertex, p (1) , p (2) , p (3) , and p (4) are the
values supplied in params, and M is the modelview matrix when glTexGen is invoked. If M is poorly
conditioned or singular, texture coordinates generated by the resulting function may be inaccurate or
undefined.

Note that the values in params define a reference plane in eye coordinates. The modelview matrix that is
applied to them may not be the same one in effect when the polygon vertices are transformed. This
function establishes a field of texture coordinates that can produce dynamic contour lines on moving
objects.

If pname is GL_SPHERE_MAP and coord is either GL_S or GL_T, s and t texture coordinates are
generated as follows. Let u be the unit vector pointing from the origin to the polygon vertex (in eye
coordinates). Let n¢ be the current normal, after transformation to eye coordinates. Let f = (f (x) f (y) f (z))T
be the reflection vector such that

{ewc msdncd, EWGraphic, bsd23545 25 /a "SDK.BMP"}

Finally, let

{ewc msdncd, EWGraphic, bsd23545 26 /a "SDK.BMP"}

Then the values assigned to the i and t texture coordinates are

{ewc msdncd, EWGraphic, bsd23545 27 /a "SDK.BMP"}

A texture-coordinate generation function is enabled or disabled using glEnable or glDisable with one of
the symbolic texture-coordinate names (GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When enabled, the specified
texture coordinate is computed according to the generating function associated with that coordinate.
When disabled, subsequent vertices take the specified texture coordinate from the current set of texture
coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are disabled. Both s
plane equations are (1,0,0,0); both t plane equations are (0,1,0,0); and all r and q plane equations are
(0,0,0,0).

The following functions retrieve information related to glTexGen:

glGetTexGen
glIsEnabled with argument GL_TEXTURE_GEN_S
glIsEnabled with argument GL_TEXTURE_GEN_T
glIsEnabled with argument GL_TEXTURE_GEN_R
glIsEnabled with argument GL_TEXTURE_GEN_Q

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM coord or pname was not an accepted

defined value, or when pname was
GL_TEXTURE_GEN_MODE and
params was not an accepted defined
value.

GL_INVALID_ENUM pname was
GL_TEXTURE_GEN_MODE, params
was GL_SPHERE_MAP, and coord
was either GL_R or GL_Q.

GL_INVALID_OPERATION glTexGen was called between a call
to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glGetTexGen, glIsEnabled, glTexEnv, glTexImage1D, glTexImage2D,
glTexParameter

glTexImage1D   

[New - Windows 95, OEM Service Release 2]

The glTexImage1D function specifies a one-dimensional texture image.

void glTexImage1D(
        GLenum target,
        GLint level,
        GLint components,
        GLsizei width,
        GLint border,
        GLenum format,
        GLenum type,
        const GLvoid *pixels
     );

Parameters
target

The target texture. Must be GL_TEXTURE_1D.
level

The level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction
image.

components
The number of color components in the texture. Must be 1, 2, 3, or 4.

width
The width of the texture image. Must be 2^n + 2(border) for some integer n. The height of the texture
image is 1.

border
The width of the border. Must be either 0 or 1.

format
The format of the pixel data. It can assume one of nine symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point (with an unspecified
number of 0 bits to the right of the binary point), shifted left or right depending on the value and
sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The
resulting index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and
clamped to the range [0,1].

GL_RED
Each element is a single red component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN
Each element is a single green component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE
Each element is a single blue component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).
GL_ALPHA

Each element is a single red component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for red, green, and blue. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).

GL_RGB
Each element is an RGB triple. It is converted to floating point and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA
Each element is a complete RGBA element. It is converted to floating point. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.
GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point, and then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue, and
attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point, and then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

type
The data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels
A pointer to the image data in memory.

Remarks
The glTexImage1D function specifies a one-dimensional texture image. Texturing maps a portion of a
specified texture image onto each graphical primitive for which texturing is enabled. One-dimensional
texturing is enabled and disabled using glEnable and glDisable with argument GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the parameters of the texture
image, such as width, width of the border, level-of-detail number (see glTexParameter), and number of
color components provided. The last three arguments describe the way the image is represented in
memory. These arguments are identical to the pixel formats used for glDrawPixels.

Data is read from pixels as a sequence of signed or unsigned bytes, shorts or longs, or single-precision
floating-point values, depending on type. These values are grouped into sets of one, two, three, or four
values, depending on format, to form elements. If type is GL_BITMAP, the data is considered as a string
of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as eight 1-bit
elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore).

A texture image can have up to four components per texture element, depending on components. A one-
component texture image uses only the red component of the RGBA color extracted from pixels. A two-
component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Texturing has no effect in color-index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

A texture image with zero width indicates the null texture. If the null texture is specified for level-of-detail
0, it is as if texturing were disabled.

The following functions retrieve information related to glTexImageID:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not GL_TEXTURE_1D.
GL_INVALID_ENUM format was not an accepted format

constant. Format constants other than
GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT were
accepted.

GL_INVALID_ENUM type was not a type constant.
GL_INVALID_ENUM type was GL_BITMAP and format was

not GL_COLOR_INDEX.
GL_INVALID_VALUE level was less than zero or greater

than log (2) max, where max was the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE components was not 1, 2, 3, or 4.
GL_INVALID_VALUE width was less than zero or greater

than 2 + GL_MAX_TEXTURE_SIZE,
or if it could not be represented as 2^n
+ 2(border) for some integer value of
n.

GL_INVALID_VALUE border was not 0 or 1.
GL_INVALID_OPERATION glTexImage1D was called between a

call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glDrawPixels, glEnd, glFog, glGetTexImage, glIsEnabled, glPixelStore, glPixelTransfer,
glTexEnv, glTexGen, glTexImage2D, glTexParameter

glTexImage2D   

[New - Windows 95, OEM Service Release 2]

The glTexImage2D function specifies a two-dimensional texture image.

void glTexImage2D(
        GLenum target,
        GLint level,
        GLint components,
        GLsizei width,
        GLsizei height,
        GLint border,
        GLenum format,
        GLenum type,
        const GLvoid *pixels
     );

Parameters
target

The target texture. Must be GL_TEXTURE_2D.
level

The level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap reduction
image.

components
The number of color components in the texture. Must be 1, 2, 3, or 4.

width
The width of the texture image. Must be 2^n + 2(border) for some integer n.

height
The height of the texture image. Must be 2^m + 2(border) for some integer m.

border
The width of the border. Must be either 0 or 1.

format
The format of the pixel data. It can assume one of nine symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point (with an unspecified
number of 0 bits to the right of the binary point), shifted left or right depending on the value and
sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer). The
resulting index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and
clamped to the range [0,1].

GL_RED
Each element is a single red component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN
Each element is a single green component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE
Each element is a single blue component. It is converted to floating point and assembled into an

RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA
Each element is a single red component. It is converted to floating point and assembled into an
RGBA element by attaching 0.0 for red, green, and blue. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see glPixelTransfer).

GL_RGB
Each element is an RGB triple. It is converted to floating point and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA
Each element is a complete RGBA element. It is converted to floating point. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BGR_EXT
Each pixel is a group of three components in this order: blue, green, red.
GL_BGR_EXT provides a format that matches the memory layout of Windows device-independent
bitmaps (DIBs). Thus your applications can use the same data with Win32 function calls and
OpenGL pixel function calls.

GL_BGRA_EXT
Each pixel is a group of four components in this order: blue, green, red, alpha.
GL_BGRA_EXT provides a format that matches the memory layout of Windows device-
independent bitmaps (DIBs). Thus your applications can use the same data with Win32 function
calls and OpenGL pixel function calls.

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point, and then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue, and
attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point, and then assembled into
an RGBA element by replicating the luminance value three times for red, green, and blue. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

type
The data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels
A pointer to the image data in memory.

Remarks
The glTexImage2D function specifies a two-dimensional texture image. Texturing maps a portion of a
specified texture image onto each graphical primitive for which texturing is enabled. Two-dimensional
texturing is enabled and disabled using glEnable and glDisable with argument GL_TEXTURE_2D.

Texture images are defined with glTexImage2D. The arguments describe the parameters of the texture
image, such as height, width, width of the border, level-of-detail number (see glTexParameter), and
number of color components provided. The last three arguments describe the way the image is

represented in memory. These arguments are identical to the pixel formats used for glDrawPixels.

Data is read from pixels as a sequence of signed or unsigned bytes, shorts or longs, or single-precision
floating-point values, depending on type. These values are grouped into sets of one, two, three, or four
values, depending on format, to form elements. If type is GL_BITMAP, the data is considered as a string
of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is treated as eight 1-bit
elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see glPixelStore). Please see
glDrawPixels for a description of the acceptable values for the type parameter.

A texture image can have up to four components per texture element, depending on components. A one-
component texture image uses only the red component of the RGBA color extracted from pixels. A two-
component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Texturing has no effect in color-index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

A texture image with zero height or width indicates the null texture. If the null texture is specified for level-
of-detail 0, it is as if texturing were disabled.

The following functions retrieve information related to glTexImage2D:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not GL_TEXTURE_2D.
GL_INVALID_ENUM format was not an accepted format

constant. Format constants other than
GL_STENCIL_INDEX and
GL_DEPTH_COMPONENT were
accepted.

GL_INVALID_ENUM type was not a type constant.
GL_INVALID_ENUM type was GL_BITMAP and format was

not GL_COLOR_INDEX.
GL_INVALID_VALUE level was less than zero or greater

than log (2) max, where max was the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE components was not 1, 2, 3, or 4.
GL_INVALID_VALUE width or height was less than zero or

greater than 2 +
GL_MAX_TEXTURE_SIZE, or if
either could not be represented as 2^k
+ 2(border) for some integer value of
k.

GL_INVALID_VALUE border was not 0 or 1.

GL_INVALID_OPERATION glTexImage2D was called between a
call to glBegin and the corresponding
call to glEnd.

See Also
glBegin, glDrawPixels, glEnd, glFog, glIsEnabled, glPixelStore, glPixelTransfer, glTexEnv,
glTexGen, glTexImage1D, glTexParameter

 glTexParameterf, glTexParameteri,
glTexParameterfv, glTexParameteriv

[New - Windows 95, OEM Service Release 2]

These functions set texture parameters.

void glTexParameterf(
        GLenum target,
        GLenum pname,
        GLfloat param
     );

void glTexParameteri(
        GLenum target,
        GLenum pname,
        GLint param
     );

Parameters
target

The target texture, which must be either GL_TEXTURE_1D or GL_TEXTURE_2D.
pname

The symbolic name of a single-valued texture parameter. The following symbols are accepted in
pname:
GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured maps to an area greater
than one texture element. There are six defined minifying functions. Two of them use the nearest
one or nearest four texture elements to compute the texture value. The other four use mipmaps.
A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions 2^nx2^m there are max(n, m) + 1 mipmaps. The first
mipmap is the original texture, with dimensions 2^nx2^m. Each subsequent mipmap has
dimensions 2^k-1x2^l-1 where 2^kx2^l are the dimensions of the previous mipmap, until either k = 0
or l = 0. At that point, subsequent mipmaps have dimension 1x2^l-1 or 2^k-1x1 until the final
mipmap, which has dimension 1x1. Mipmaps are defined using glTexImage1D or glTexImage2D
with the level-of-detail argument indicating the order of the mipmaps. Level 0 is the original texture;
level bold max(n, m) is the final 1x1 mipmap.

GL_TEXTURE_MAG_FILTER
The texture magnification function is used when the pixel being textured maps to an area less than
or equal to one texture element. It sets the texture magnification function to either GL_NEAREST
or GL_LINEAR.

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordinate s to either GL_CLAMP or GL_REPEAT.
GL_CLAMP causes s coordinates to be clamped to the range [0,1] and is useful for preventing
wrapping artifacts when mapping a single image onto an object. GL_REPEAT causes the integer
part of the s coordinate to be ignored; OpenGL uses only the fractional part, thereby creating a
repeating pattern. Border texture elements are accessed only if wrapping is set to GL_CLAMP.
Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate t to either GL_CLAMP or GL_REPEAT. See the
discussion under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to
GL_REPEAT.

param

The value of pname.

void glTexParameterfv(
        GLenum target,
        GLenum pname,
        const GLfloat *params
     );

void glTexParameteriv(
        GLenum target,
        GLenum pname,
        const GLint *params
     );

Parameters
target

The target texture, which must be either GL_TEXTURE_1D or GL_TEXTURE_2D.
pname

The symbolic name of a texture parameter. The following symbols are accepted in pname:
GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured maps to an area greater
than one texture element. There are six defined minifying functions. Two of them use the nearest
one or nearest four texture elements to compute the texture value. The other four use mipmaps.
A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions 2^nx2^m there are max(n, m) + 1 mipmaps. The first
mipmap is the original texture, with dimensions 2^nx2^m. Each subsequent mipmap has
dimensions 2^k-1x2^l-1 where 2^kx2^l are the dimensions of the previous mipmap, until either k = 0
or l = 0. At that point, subsequent mipmaps have dimension 1x2^l-1 or 2^k-1x1 until the final
mipmap, which has dimension 1x1. Mipmaps are defined using glTexImage1D or glTexImage2D
with the level-of-detail argument indicating the order of the mipmaps. Level 0 is the original texture;
level bold max(n, m) is the final 1x1 mipmap.

GL_TEXTURE_MAG_FILTER
The texture magnification function is used when the pixel being textured maps to an area less than
or equal to one texture element. It sets the texture magnification function to either GL_NEAREST
or GL_LINEAR.

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordinate s to either GL_CLAMP or GL_REPEAT.
GL_CLAMP causes s coordinates to be clamped to the range [0,1] and is useful for preventing
wrapping artifacts when mapping a single image onto an object. GL_REPEAT causes the integer
part of the s coordinate to be ignored; OpenGL uses only the fractional part, thereby creating a
repeating pattern. Border texture elements are accessed only if wrapping is set to GL_CLAMP.
Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate t to either GL_CLAMP or GL_REPEAT. See the
discussion under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to
GL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Sets a border color. The params parameter contains four values that comprise the RGBA color of
the texture border. Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the
range [0,1] when they are specified. Initially, the border color is (0, 0, 0, 0).

params
A pointer to an array where the value or values of pname are stored. The params parameter supplies
a function for minifying the texture as one of the following:

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance) to the center of the
pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the center of the pixel
being textured. These can include border texture elements, depending on the values of
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, and on the exact mapping. GL_NEAREST is
generally faster than GL_LINEAR, but it can produce textured images with sharper edges because
the transition between texture elements is not as smooth. The default value of
GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_NEAREST_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and uses the
GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a texture
value.

GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured and uses the
GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the
center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being textured and uses
the GL_NEAREST criterion (the texture element nearest to the center of the pixel) to produce a
texture value from each mipmap. The final texture value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being textured and uses
the GL_LINEAR criterion (a weighted average of the four texture elements that are closest to the
center of the pixel) to produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

Remarks
Texture mapping is a technique that applies an image onto an object's surface as if the image were a
decal or cellophane shrink-wrap. The image is created in texture space, with an (s, t) coordinate system.
A texture is a one- or two-dimensional image and a set of parameters that determine how samples are
derived from the image.

The glTexParameter function assigns the value or values in params to the texture parameter specified as
pname. The target parameter defines the target texture, either GL_TEXTURE_1D or GL_TEXTURE_2D.

As more texture elements are sampled in the minification process, fewer aliasing artifacts will be
apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the other
four, they sample only one or four texture elements to determine the texture value of the pixel being
rendered and can produce moire patterns or ragged transitions. The default value of
GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.

Suppose texturing is enabled (by calling glEnable with argument GL_TEXTURE_1D or
GL_TEXTURE_2D) and GL_TEXTURE_MIN_FILTER is set to one of the functions that requires a
mipmap. If either the dimensions of the texture images currently defined (with previous calls to
glTexImage1D or glTexImage2D) do not follow the proper sequence for mipmaps, or there are fewer
texture images defined than are needed, or the set of texture images have differing numbers of texture
components, then it is as if texture mapping were disabled.

Linear filtering accesses the four nearest texture elements only in 2-D textures. In 1-D textures, linear
filtering accesses the two nearest texture elements.

The following function retrieves information related to glTexParameterf, glTexParameteri,
glTexParameterfv, and glTexParameteriv:

glGetTexParameter

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target or pname was not one of the

accepted defined values, or when
params should have had a defined
constant value (based on the value of
pname) and did not.

GL_INVALID_OPERATION glTexParameter was called between
a call to glBegin and the
corresponding call to glEnd.

See Also
glBegin, glEnd, glGetTexParameter, glTexEnv, glTexGen, glTexImage1D, glTexImage2D

glTexSubImage1D
[New - Windows 95, OEM Service Release 2]

The glTexSubImage1D function specifies a portion of an existing one-dimensional texture image. You
cannot define a new texture with glTexSubImage1D.

void glTexSubImage1D(
        GLenum target,
        GLint level,
        GLint xoffset,
        GLsizei width,
        GLenum format,
        GLenum type,
        const GLvoid *pixels
     );

Parameters
target

The target texture. Must be GL_TEXTURE_1D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
xoffset

A texel offset in the x direction within the texture array.
width

The width of the texture sub-image.
format

The format of the pixel data. This parameter can assume one of the following symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point format (with an
unspecified number of 0 bits to the right of the binary point), shifted left or right depending on the
value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer).
The resulting index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and
clamped to the range [0,1].

GL_RED
Each element is a single red component. It is converted to floating point format and assembled into
an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN
Each element is a single green component. It is converted to floating point format and assembled
into an RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE
Each element is a single blue component. It is converted to floating point format and assembled
into an RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA
Each element is a single alpha component. It is converted to floating point format and assembled
into an RGBA element by attaching 0.0 for red, green, and blue. Each component is then multiplied

by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1] (see glPixelTransfer).

GL_RGB
Each element is an RGB triple. It is converted to floating point and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA
Each element is a complete RGBA element. It is converted to floating point format. Each
component is then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias
GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point format, and then
assembled into an RGBA element by replicating the luminance value three times for red, green,
and blue, and attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point format, and then
assembled into an RGBA element by replicating the luminance value three times for red, green,
and blue. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to
the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

type
The data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels
A pointer to the image data in memory.

Remarks
One-dimensional texturing for a primitive is enabled using glEnable and glDisable with the argument
GL_TEXTURE_1D. During texturing, part of a specified texture image is mapped onto each enabled
primitive. You use the glTexSubImage1D function to specify a contiguous sub-image of an existing one-
dimensional texture image for texturing.

The texels referenced by pixels replace a region of the existing texture array with x indexes of xoffset and
xoffset + (width - 1) inclusive. This region cannot include any texels outside the range of the originally
specified texture array.

Specifying a sub-image with a width of zero has no effect and does not generate an error.

Texturing has no effect in color-index mode.

In general, texture images can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

The following functions retrieve information related to glTexSubImage1D:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_1D

Error Codes

The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not GL_TEXTURE_1D.
GL_INVALID_ENUM format was not an accepted constant.
GL_INVALID_ENUM type was not a constant.
GL_INVALID_ENUM type was GL_BITMAP and format was

not GL_COLOR_INDEX.
GL_INVALID_VALUE level was less than zero or greater

than log (2) max, where max was the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE xoffset was less than -b, or xoffset +
width was greater than w - b, where w
is the GL_TEXTURE_WIDTH, and b
is the width of the
GL_TEXTURE_BORDER of the
texture image being modified.

Note that w includes twice the border
width.

GL_INVALID_VALUE width was less than -b, where b is the
border width of the texture array.

GL_INVALID_VALUE border was not zero or 1.
GL_INVALID_OPERATION The texture array was not defined by

a previous glTexImage1D operation.

GL_INVALID_OPERATION glTexSubImage1D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glDrawPixels, glEnable, glFog, glGetTexImage, glIsEnabled, glPixelStore, glPixelTransfer,
glTexEnv, glTexGen, glTexImage1D, glTexParameter

glTexSubImage2D
[New - Windows 95, OEM Service Release 2]

The glTexSubImage2D function specifies a portion of an existing one-dimensional texture image. You
cannot define a new texture with glTexSubImage2D.

void glTexSubImage2D(
        GLenum target,
        GLint level,
        GLint xoffset,
        GLint yoffset,
        GLsizei width,
        GLsizei height,
        GLenum format,
        GLenum type,
        const GLvoid *pixels
     );

Parameters
target

The target texture. Must be GL_TEXTURE_2D.
level

The level-of-detail number. Level 0 is the base image. Level n is the nth mipmap reduction image.
xoffset

A texel offset in the x direction within the texture array.
yoffset

A texel offset in the y direction within the texture array.
width

The width of the texture sub-image.
height

The height of the texture sub-image.
format

The format of the pixel data. It can assume one of the following symbolic values:
GL_COLOR_INDEX

Each element is a single value, a color index. It is converted to fixed point format (with an
unspecified number of 0 bits to the right of the binary point), shifted left or right depending on the
value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see glPixelTransfer).
The resulting index is converted to a set of color components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A tables, and
clamped to the range [0,1].

GL_RED
Each element is a single red component. It is converted to floating point format and assembled into
an RGBA element by attaching 0.0 for green and blue, and 1.0 for alpha. Each component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN
Each element is a single green component. It is converted to floating point format and assembled
into an RGBA element by attaching 0.0 for red and blue, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE
Each element is a single blue component. It is converted to floating point format and assembled

into an RGBA element by attaching 0.0 for red and green, and 1.0 for alpha. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA
Each element is a single alpha component. It is converted to floating point format and assembled
into an RGBA element by attaching 0.0 for red, green, and blue. Each component is then multiplied
by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to
the range [0,1] (see glPixelTransfer).

GL_RGB
Each element is an RGB triple. It is converted to floating point format and assembled into an RGBA
element by attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_RGBA
Each element is a complete RGBA element. It is converted to floating point. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE
Each element is a single luminance value. It is converted to floating point format, and then
assembled into an RGBA element by replicating the luminance value three times for red, green,
and blue, and attaching 1.0 for alpha. Each component is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

GL_LUMINANCE_ALPHA
Each element is a luminance/alpha pair. It is converted to floating point format, and then
assembled into an RGBA element by replicating the luminance value three times for red, green,
and blue. Each component is then multiplied by the signed scale factor GL_c_SCALE, added to
the signed bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

type
The data type of the pixel data. The following symbolic values are accepted: GL_UNSIGNED_BYTE,
GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels
A pointer to the image data in memory.

Remarks
Two-dimensional texturing for a primitive is enabled using glEnable and glDisable with the argument
GL_TEXTURE_2D. During texturing, part of a specified texture image is mapped onto each enabled
primitive. You use the glTexSubImage2D function to specify a contiguous sub-image of an existing one-
dimensional texture image for texturing.

The texels referenced by pixels replace a region of the existing texture array with x indexes of xoffset and
xoffset + (width - 1) inclusive and y indexes of yoffset and Yoffset + (height - 1) inclusive. This region
cannot include any texels outside the range of the originally specified texture array.

Specifying a sub-image with a width of zero has no effect and does not generate an error.

Texturing has no effect in color-index mode.

In general, texture images can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

The following functions retrieve information related to glTexSubImage2D:

glGetTexImage
glIsEnabled with argument GL_TEXTURE_2D

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_ENUM target was not GL_TEXTURE_2D.
GL_INVALID_ENUM format was not an accepted constant.
GL_INVALID_ENUM type was not an accepted constant.
GL_INVALID_ENUM type was GL_BITMAP and format was

not GL_COLOR_INDEX.
GL_INVALID_VALUE level was less than zero or greater

than log (2) max, where max was the
returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE xoffset was less than -b; or xoffset +
width was greater than w - b; or
yoffset was less than -b; or yoffset +
height was greater than h - b, where
w is the GL_TEXTURE_WIDTH, h is
the GL_TEXTURE_HEIGHT, and b is
the width of the
GL_TEXTURE_BORDER of the
texture image being modified.

Note that w and h include twice the
border width.

GL_INVALID_VALUE width was less than -b, where b is the
border width of the texture array.

GL_INVALID_VALUE border was not zero or 1.
GL_INVALID_OPERATION The texture array was not defined by

a previous glTexImage2D operation.

GL_INVALID_OPERATION glTexSubImage2D was called
between a call to glBegin and the
corresponding call to glEnd.

See Also
glDrawPixels, glEnable, glFog, glGetTexImage, glIsEnabled, glPixelStore, glPixelTransfer,
glTexEnv, glTexGen, glTexImage2D, glTexParameter

glTranslated, glTranslatef
[New - Windows 95, OEM Service Release 2]

The glTranslated and glTranslatef functions multiply the current matrix by a translation matrix.

void glTranslated(
        GLdouble x,
        GLdouble y,
        GLdouble z
     );

void glTranslatef(
        GLfloat x,
        GLfloat y,
        GLfloat z
     );

Parameters
x, y, z

The x, y, and z coordinates of a translation vector.

Remarks
The glTranslate function moves the coordinate system origin to the point specified by (x, y, z). The
translation vector is used to compute a 4x4 translation matrix:

{ewc msdncd, EWGraphic, bsd23545 28 /a "SDK.BMP"}

The current matrix (see glMatrixMode) is multiplied by this translation matrix, with the product replacing
the current matrix. That is, if M is the current matrix and T is the translation matrix, then M is replaced with
M·T.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glTranslate is
called are translated. Use glPushMatrix and glPopMatrix to save and restore the untranslated
coordinate system.

The following functions retrieve information related to glTranslated and glTranslatef:

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_OPERATION glTranslate was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glEnd, glMatrixMode, glMultMatrix, glPushMatrix, glRotate, glScale

 glVertex
[New - Windows 95, OEM Service Release 2]

glVertex2d, glVertex2f, glVertex2i, glVertex2s, glVertex3d, glVertex3f, glVertex3i, glVertex3s,
glVertex4d, glVertex4f, glVertex4i, glVertex4s, glVertex2dv, glVertex2fv, glVertex2iv,
glVertex2sv, glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv, glVertex4dv, glVertex4fv,
glVertex4iv, glVertex4sv

These functions specify a vertex.

void glVertex2d(
        GLdouble x,
        GLdouble y
     );

void glVertex2f(
        GLfloat x,
        GLfloat y
     );

void glVertex2i(
        GLint x,
        GLint y
     );

void glVertex2s(
        GLshort x,
        GLshort y
     );

void glVertex3d(
        GLdouble x,
        GLdouble y,
        GLdouble z
     );

void glVertex3f(
        GLfloat x,
        GLfloat y,
        GLfloat z
     );

void glVertex3i(
        GLint x,
        GLint y,
        GLint z
     );

void glVertex3s(
        GLshort x,
        GLshort y,
        GLshort z
     );

void glVertex4d(
        GLdouble x,
        GLdouble y,

        GLdouble z,
        GLdouble w
     );

void glVertex4f(
        GLfloat x,
        GLfloat y,
        GLfloat z,
        GLfloat w
     );

void glVertex4i(
        GLint x,
        GLint y,
        GLint z,
        GLint w
     );

void glVertex4s(
        GLshort x,
        GLshort y,
        GLshort z,
        GLshort w
     );

Parameters
x, y, z, w

The x, y, z, and w coordinates of a vertex. Not all parameters are present in all forms of the
command.

void glVertex2dv(
        const GLdouble *v
     );

void glVertex2fv(
        const GLfloat *v
     );

void glVertex2iv(
        const GLint *v
     );

void glVertex2sv(
        const GLshort *v
     );

void glVertex3dv(
        const GLdouble *v
     );

void glVertex3fv(
        const GLfloat *v
     );

void glVertex3iv(
        const GLint *v
     );

void glVertex3sv(

        const GLshort *v
     );

void glVertex4dv(
        const GLdouble *v
     );

void glVertex4fv(
        const GLfloat *v
     );

void glVertex4iv(
        const GLint *v
     );

void glVertex4sv(
        const GLshort *v
     );

Parameters
v

A pointer to an array of two, three, or four elements. The elements of a two-element array are x and y;
of a three-element array, x, y, and z; and of a four-element array, x, y, z, and w.

Remarks
The glVertex function commands are used within glBegin/glEnd pairs to specify point, line, and polygon
vertices. The current color, normal, and texture coordinates are associated with the vertex when glVertex
is called.

When only x and y are specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z are specified, w
defaults to 1.0.

Invoking glVertex outside of a glBegin/glEnd pair results in undefined behavior.

See Also
glBegin, glCallList, glColor, glEdgeFlag, glEnd, glEvalCoord, glIndex, glMaterial, glNormal, glRect,
glTexCoord

glVertexPointer
[New - Windows 95, OEM Service Release 2]

The glVertexPointer function defines an array of vertex data.

void glVertexPointer(
        GLint size,
        GLenum type,
        GLsizei stride,
        GLsizei count,
        const GLvoid *pointer
     );

Parameters
size

The number of coordinates per vertex. The value of size must be 2, 3, or 4.
type

The data type of each coordinate in the array using the following symbolic constants: GL_SHORT,
GL_INT, GL_FLOAT, and GL_DOUBLE.

stride
The byte offset between consecutive vertices. When stride is zero, the vertices are tightly packed in
the array.

count
The number of vertices, counting from the first, that are static.

pointer
A pointer to the first coordinate of the first vertex in the array.

Remarks
The glVertexPointer function specifies the location and data of an array of vertex coordinates to use
when rendering. The size parameter specifies the number of coordinates per vertex. The type parameter
specifies the data type of each vertex coordinate. The stride parameter determines the byte offset from
one vertex to the next, enabling the packing of vertices and attributes in a single array or storage in
separate arrays. In some implementations, storing the vertices and attributes in a single array can be
more efficient than using separate arrays. Starting from the first vertex element, the count parameter
indicates the total number of static elements. Your application can modify static elements, but once the
elements are modified, the application must explicitly specify the array again before using the array for
any rendering. Non-static array elements are not accessed until you call glDrawArrays or
glArrayElement.

A vertex array is enabled when you specify the GL_VERTEX_ARRAY constant with glEnableClientState.
When enabled, glDrawArrays and glArrayElement use the vertex array. By default, the vertex array is
disabled.

You cannot include glVertexPointer in display lists.

When you specify a vertex array using glVertexPointer, the values of all the function's vertex array
parameters are saved in a client-side state and static array elements can be cached. Because the vertex
array parameters are client-side state, their values are not saved or restored by glPushAttrib and
glPopAttrib.

Although no error is generated if you call glVertexPointer within glBegin and glEnd pairs, the results are
undefined.

The following functions retrieve information related to glVertexPointer:

glGet with argument GL_VERTEX_ARRAY_SIZE
glGet with argument GL_VERTEX_ARRAY_STRIDE
glGet with argument GL_VERTEX_ARRAY_COUNT
glGet with argument GL_VERTEX_ARRAY_TYPE
glGetPointerv with argument GL_VERTEX_ARRAY_POINTER
glIsEnabled with argument GL_VERTEX_ARRAY

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE size was not 2, 3, or 4.
GL_INVALID_ENUM type was not an accepted value.
GL_INVALID_VALUE stride or count was negative.

See Also
glArrayElement, glColorPointer, glDrawArrays, glEdgeFlagPointer, glEnableClientState,
glGetPointerv, glGetString, glIndexPointer, glIsEnabled, glNormalPointer, glTexCoordPointer

glViewport   

[New - Windows 95, OEM Service Release 2]

The glViewport function sets the viewport.

void glViewport(
        GLint x,
        GLint y,
        GLsizei width,
        GLsizei height
     );

Parameters
x, y

The lower-left corner of the viewport rectangle, in pixels. The default is (0,0).
width, height

The width and height, respectively, of the viewport. When an OpenGL context is first attached to a
window, width and height are set to the dimensions of that window.

Remarks
The glViewport function specifies the affine transformation of x and y from normalized device coordinates
to window coordinates. Let (x (nd) , y (nd)) be normalized device coordinates. The window coordinates (x (w)
, y (w)) are then computed as follows:

{ewc msdncd, EWGraphic, bsd23545 29 /a "SDK.BMP"}

Viewport width and height are silently clamped to a range that depends on the implementation. This range
is queried by calling glGet with argument GL_MAX_VIEWPORT_DIMS.

The following functions retrieve information related to glViewport:

glGet with argument GL_VIEWPORT
glGet with argument GL_MAX_VIEWPORT_DIMS

Error Codes
The following are the error codes generated and their conditions.

Error Code Condition
GL_INVALID_VALUE Either width or height was negative.
GL_INVALID_OPERATION glViewport was called between a call

to glBegin and the corresponding call
to glEnd.

See Also
glBegin, glDepthRange

Introduction to Porting to
OpenGL for Windows NT and
Windows 95

OpenGL is designed for compatibility across hardware and operating systems. This design makes it
easier for programmers to port OpenGL programs from one system to another. While each operating
system has unique requirements, much of the OpenGL code in your current programs can be used as is.
To port your OpenGL application to Microsoft® Windows NT® and Windows® 95 operating systems, you'll
have to modify your programs to work with the Windows NT and Windows 95 windowing systems.

In general applications are ported to OpenGL for Windows NT and Windows 95 from one of two
platforms:

· OpenGL applications developed for the X Window System and the X library (Xlib)
· IRIS GL applications

The following topics describe how to port your applications from each of these platforms. The topics
discuss porting OpenGL and window management code only; there is no discussion of other operating
system port issues such as reading files, messaging, thread creation, and so on. This porting guide
focuses on specific porting issues and assumes that you have an understanding of OpenGL and
Windows NT and Windows 95 programming.

Porting X Window System Applications
Like Windows NT and Windows 95, the X Window System is an event-handling, message-based system
that uses window controls and menus. The OpenGL code in your X Window System application is
probably located in areas that roughly correspond to where it will appear when you port it to Windows NT
and Windows 95. Most of your OpenGL code will not change, but you must rewrite any code that is
specific to the X Window System. For more information on Win32® application programming interface
User and GDI calls, refer to the Win32 Programmer's Reference. For more information on the X Window
System and UNIX, refer to your X Window System and UNIX operating system documentation.

Use the following general procedure to port your X
Window System OpenGL programs to Windows NT and Windows 95
1. Rewrite the X Window System specific code using equivalent Win32 code. Locate window-creation

and event-handling code. The X Window System, Windows NT, and Windows 95 are event-handling,
message-based windowing systems, which makes it easier to determine where to make the
appropriate changes. (However, especially for large applications, rewriting an application from one
operating system to another can be a complex and difficult undertaking.)

2. Locate any code that uses GLX functions. These are the functions you'll translate to their equivalent
Win32 functions.

3. Translate GLX pixel format functions and Visual/Drawable functions to appropriate Win32/OpenGL
pixel format and device context functions.

4. Translate GLX rendering context functions to Win32/OpenGL rendering context functions.
5. Translate GLX Pixmap functions to equivalent Win32 functions.
6. Translate GLX framebuffer and other GLX functions to the appropriate Win32 functions.

Translating the GLX Library
OpenGL X Window System programs use the OpenGL Extension with the X Window System (GLX)
library. The library is a set of functions and routines that initialize the pixel format, control rendering, and
perform other OpenGL specific tasks. It connects the OpenGL library to the X Window System by
managing window handles and rendering contexts. You must translate these functions to their equivalent
Windows NT and Windows 95 functions. The following table lists the X Window System GLX functions
and their equivalent Win32 functions.

GLX/Xlib Function Win32 Function
glXChooseVisual ChoosePixelFormat
glXCopyContext Not applicable.
glXCreateContext wglCreateContext
glXCreateGLXPixmap CreateDIBitmap/CreateDIBSection
glXDestroyContext wglDeleteContext
glXDestroyGLXPixmap DeleteObject
glXGetConfig DescribePixelFormat
glXGetCurrentContext wglGetCurrentContext
glXGetCurrentDrawabl
e

wglGetCurrentDC

glXIsDirect Not applicable.
glXMakeCurrent wglMakeCurrent
glXQueryExtension GetVersion
glXQueryVersion GetVersion
glXSwapBuffers SwapBuffers
glXUseXFont wglUseFontBitmaps
XGetVisualInfo GetPixelFormat
XCreateWindow CreateWindow/CreateWindowEx

and GetDC/BeginPaint
XSync GdiFlush
Not applicable. SetPixelFormat

Some GLX functions don't have an equivalent Win32 function. To port these functions to Win32, rewrite
your code to achieve the same functionality. For example, glXWaitGL has no equivalent Win32 function
but you can achieve the same result, executing any pending OpenGL commands, by calling glFinish.

The following topics describe how to port GLX functions that set the pixel format, and manage rendering
contexts, pixmaps and bitmaps.

Porting Device Contexts and Pixel Formats
Each window in the Microsoft implementation of OpenGL for Windows NT and Windows 95 has its own
current pixel format. A pixel format is defined by a PIXELFORMATDESCRIPTOR data structure. Because
each window has its own pixel format, you obtain a device context, set the pixel format of the device
context, and then create an OpenGL rendering context for the device context. The rendering context
automatically uses the pixel format of its device context.

The X Window System also uses a data structure, XVisualInfo, to specify the properties of pixels in a
window. XVisualInfo structures contain a Visual data structure that describes how color resources are
used in a specific screen.

In the X Window System, XVisualInfo is used to create a window by setting the window to the pixel
format you want. The returned structure is used to create the window and a rendering context. In
Windows NT and Windows 95, you first create a window and get a handle to a device context (HDC) of
the window. The HDC is then used to set the pixel format for the window. The rendering context uses the
pixel format of the window.

The following table compares the X Window System and GLX visual functions with their equivalent Win32
pixel format functions.

X Window/GLX Visual Function Win32 Pixel Format Function
XVisualInfo*
glXChooseVisual(Display *dpy,
        int screen,
        int *attribList)

int ChoosePixelFormat(HDC
hdc,
PIXELFORMATDESCRIPTOR
*ppfd)

int glXGetConfig(Display *dpy,
        XVisualInfo *vis,
        int *attribList,
        int *value)

int DescribePixelFormat(HDC
hdc,
                int iPixelFormat,
                UINT nBytes,
LPPIXELFORMATDESCRIPTOR
ppfd)

XVisualInfo*
XGetVisualInfo(Display *dpy,
        long vinfo_mask,
        XVisualInfo *vinfo_templ,
        int *nitems)

int GetPixelFormat(HDC hdc)

The visual returned by
glxChooseVisual is used when a
window is created.

BOOL SetPixelFormat(HDC hdc,
                int iPixelFormat,
PIXELFORMATDESCRIPTOR
*ppfd)

   

The following sections give examples of pixel format code fragments for an X Window System program,
and the same code after it has been ported to Windows NT and Windows 95.

For more information on pixel formats, see Pixel Formats.

GLX Pixel Format Code Sample
The code sample below shows how an X Window System OpenGL program uses GLX visual/pixel
formatting functions.

/* X globals, defines, and prototypes */
Display *dpy;
Window glwin;
static int attributes[] = {GLX_DEPTH_SIZE, 16, GLX_DOUBLEBUFFER, None};

 /* find an OpenGL-capable Color Index visual with depth buffer */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributes);
 if (vi == NULL) {
 fprintf(stderr, "could not get visual\n");
 exit(1);
 }

The Visual can be used to create a window and a rendering context.

Win32 Pixel Format Code Sample
The following code sample shows a function that sets the pixel format using Win32 functions:

BOOL bSetupPixelFormat(HDC hdc)
{
 PIXELFORMATDESCRIPTOR pfd, *ppfd;
 int pixelformat;

 ppfd = &pfd;

 ppfd->nSize = sizeof(PIXELFORMATDESCRIPTOR);
 ppfd->nVersion = 1;
 ppfd->dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
 PFD_DOUBLEBUFFER;
 ppfd->dwLayerMask = PFD_MAIN_PLANE;
 ppfd->iPixelType = PFD_TYPE_COLORINDEX;
 ppfd->cColorBits = 8;
 ppfd->cDepthBits = 16;
 ppfd->cAccumBits = 0;
 ppfd->cStencilBits = 0;

 pixelformat = ChoosePixelFormat(hdc, ppfd);

 if ((pixelformat = ChoosePixelFormat(hdc, ppfd)) == 0)
 {
 MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 if (SetPixelFormat(hdc, pixelformat, ppfd) == FALSE)
 {
 MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 return TRUE;
}

Porting Rendering Contexts
The X Window System, Windows NT, and Windows 95 render through rendering contexts. Six GLX
functions manage rendering contexts and five of them have an equivalent Win32 function.

The following table lists the GLX rendering functions and their equivalent Win32 functions.

GLX Rendering Context
Function

Win32 Rendering Context
Function

GLXContext
glXCopyContext(Display *dpy,
        GLXContext src,
        GLXContext dst,
        GLuint mask)

Not applicable.

GLXContext
glXCreateContext(Display *dpy,
        XVisualInfo *vis,
        GLXContext shareList,
        Bool direct)

HGLRC wglCreateContext(HDC
hdc)

void glXDeleteContext
(Display *dpy,
        GLXContext ctx)

BOOL
wglDeleteContext(HGLRC hglrc)

GLXContext
glXGetCurrentContext
(void)

HGLRC
wglGetCurrentContext(VOID)

GLXDrawable
glXGetCurrentDrawable(void)

HDC wglGetCurrentDC(VOID)

Bool
glXMakeCurrent(Display *dpy,
        GLXDrawable draw,
        GLXContext ctx)

BOOL wglMakeCurrent(HDC
hdc,
                HGLRC hglrc)

   

Return types and other types have different names in the X Window System than in Windows NT and
Windows 95. You can search for occurrences of GLXContext to help find parts of your code that need to
be ported.

The following sections compare rendering context code samples in an X Window System program and
the same code after it has been ported to Windows NT and Windows 95.

For more information on rendering contexts, see Rendering Contexts.

GLX Rendering Context Code Sample
The following code sample shows how an X Window System OpenGL program uses GLX rendering
context functions.

Display *dpy; /* display variable */
XVisualInfo *vi; /* visual variable */
Window win; /* window variable */
GLXDrawable drawable; /* drawable variable */
GLXContext cx, cxTemp; /* rendering context variables */

/* Code to open a display and get a visual. */

/* Create a GLX context. */
cx = glXCreateContext(dpy, vi, 0, GL_FALSE);
if (!cx) {
 fprintf(stderr, "Cannot create context.\n");
 exit(-1);
}

 .
/* Connect the context to the window. */
glXMakeCurrent(dpy, win, cx);

 .
/* When it's time to destroy the rendering context. . . */
cx = glXGetCurrentContext;
glXDestroyContext(dpy, cx);

Win32 Rendering Context Code Sample     
The following code sample shows how the GLX rendering context code in the previous section looks
when it has been ported to Windows NT and Windows 95 using Win32 functions.

HGLRC hRC; // rendering context variable

/* Create and initialize a window */

 .
/* Window message switch in a window procedure */
case WM_CREATE: // Message when window is created
{
 HDC hDC, hDCTemp; // device context handles

 /* Get the handle of the windows device context. */
 hDC = GetDC(hWnd);

 /* Create a rendering context and make it the current context */
 hRC = wglCreateContext(hDC);
 if (!hRC)
 {
 MessageBox(NULL, "Cannot create context.", "Error", MB_OK);
 return FALSE;
 }
 wglMakeCurrent(hDC, hRC);
}
break;

 .
case WM_DESTROYED: // Message when window is destroyed
{
 HGLRC hRC // rendering context handle
 HDC hDC; // device context handle

 /* Release and free the device context and rendering context. */
 hDC = wglGetCurrentDC;
 hRC = wglGetCurrentContext;

 wglMakeCurrent(NULL, NULL);

 if (hRC)
 wglDeleteContext(hRC);

 if (hDC)
 ReleaseDC(hWnd, hDC);

 PostQuitMessage (0);
}
break;

Porting GLX Pixmap Code
The X Window System uses pixmaps, which are off-screen virtual drawing surfaces in the form of a three-
dimensional array of bits. You can think of a pixmap as a stack of bitmaps: a two-dimensional array of
pixels with each pixel having a value from 0 to 2N-1 where N is the depth of the pixmap.

For OpenGL programs you use the GLX functions, glXCreateGLXPixmap and glXDestroyGLXPixmap,
to create and destroy GLX pixmaps used for off-screen rendering.

Windows NT and Windows 95 use device-independent bitmaps that serve the same function as X
Window System pixmaps. Use the standard Win32 bitmap functions to create and destroy bitmaps.

The following table lists the GLX pixmap functions and their equivalent Win32 bitmap functions.

GLX Pixmap and Font Function Win32 Bitmap and Font
Function

GLXPixmap
glXCreateGLXPixmap(Display
*dpy,
        XVisualInfo *vis,
        Pixmap pixmap)

HBITMAP CreateDIBitmap(HDC
hdc,
               
LPBITMAPINFOHEADER
lpbmih,
                DWORD fdwInit,
                CONST BYTE *lpbInit,
                LPBITMAPINFO lpbmi,
                UINT fuUsage)
HBITMAP
CreateDIBSection(HDC hdc,
                LPBITMAPINFO lpbmi,
                DWORD fInit,
                DWORD iUsage)

void   
glXDestroyGLXPixmap(Display
*dpy,
        GLXPixmap pix)

BOOL DeleteObject(HGDIOBJ
hObject)

Porting Other GLX Code
In addition to the Xlib and GLX functions described in the preceding sections, your program probably
contains some of the other GLX or Xlib functions listed in Translating the GLX Library. Rewrite your X
Window System code to Windows NT and Windows 95 code, substituting the appropriate functions.

A Porting Sample
It's easier to understand how to modify your X Window System OpenGL program for a Windows NT or
Windows 95 program if you can compare before and after samples, and you can better see how the
translated code is used in the proper context. This section presents an example of an X Window System
OpenGL program, and then shows how the program looks after it has been ported to Windows NT and
Windows 95. Note that the OpenGL code is the same in both programs.

An X Window System OpenGL Program
The following program is an X Window System OpenGL program with the same OpenGL code used in the
AUXEDEMO.C sample program supplied with the Win32 SDK. Compare this program with the Win32
OpenGL program in The Program Ported to Win32.

/*
 * Example of an X Window System OpenGL program.
 * OpenGL code is taken from auxdemo.c in the Win32 SDK
 */
#include <GL/glx.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>

/* X globals, defines, and prototypes */
Display *dpy;
Window glwin;
static int attributes[] = {GLX_DEPTH_SIZE, 16, GLX_DOUBLEBUFFER, None};

#define SWAPBUFFERS glXSwapBuffers(dpy, glwin)
#define BLACK_INDEX 0
#define RED_INDEX 1
#define GREEN_INDEX 2
#define BLUE_INDEX 4
#define WIDTH 300
#define HEIGHT 200

/* OpenGL globals, defines, and prototypes */
GLfloat latitude, longitude, latinc, longinc;
GLdouble radius;

#define GLOBE 1
#define CYLINDER 2
#define CONE 3

GLvoid resize(GLsizei, GLsizei);
GLvoid initializeGL(GLsizei, GLsizei);
GLvoid drawScene(GLvoid);
void polarView(GLdouble, GLdouble, GLdouble, GLdouble);

static Bool WaitForMapNotify(Display *d, XEvent *e, char *arg)
{
 if ((e->type == MapNotify) && (e->xmap.window == (Window)arg)) {
 return GL_TRUE;
 }
 return GL_FALSE;
}

void

main(int argc, char **argv)
{
 XVisualInfo *vi;
 Colormap cmap;
 XSetWindowAttributes swa;
 GLXContext cx;
 XEvent event;
 GLboolean needRedraw = GL_FALSE, recalcModelView = GL_TRUE;
 int dummy;

 dpy = XOpenDisplay(NULL);
 if (dpy == NULL){
 fprintf(stderr, "could not open display\n");
 exit(1);
 }

 if(!glXQueryExtension(dpy, &dummy, &dummy)){
 fprintf(stderr, "could not open display");
 exit(1);
 }

 /* find an OpenGL-capable Color Index visual with depth buffer */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributes);
 if (vi == NULL) {
 fprintf(stderr, "could not get visual\n");
 exit(1);
 }

 /* create an OpenGL rendering context */
 cx = glXCreateContext(dpy, vi, None, GL_TRUE);
 if (cx == NULL) {
 fprintf(stderr, "could not create rendering context\n");
 exit(1);
 }

 /* create an X colormap since probably not using default visual */
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 swa.colormap = cmap;
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | KeyPressMask | StructureNotifyMask;
 glwin = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, WIDTH,
 HEIGHT, 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel | CWColormap | CWEventMask, &swa);
 XSetStandardProperties(dpy, glwin, "xogl", "xogl", None, argv,
 argc, NULL);

 glXMakeCurrent(dpy, glwin, cx);

 XMapWindow(dpy, glwin);
 XIfEvent(dpy, &event, WaitForMapNotify, (char *)glwin);

 initializeGL(WIDTH, HEIGHT);
 resize(WIDTH, HEIGHT);

 /* Animation loop */
 while (1) {
 KeySym key;

 while (XPending(dpy)) {
 XNextEvent(dpy, &event);
 switch (event.type) {
 case KeyPress:
 XLookupString((XKeyEvent *)&event, NULL, 0, &key, NULL);
 switch (key) {
 case XK_Left:
 longinc += 0.5;
 break;
 case XK_Right:
 longinc -= 0.5;
 break;
 case XK_Up:
 latinc += 0.5;
 break;
 case XK_Down:
 latinc -= 0.5;
 break;
 }
 break;
 case ConfigureNotify:
 resize(event.xconfigure.width, event.xconfigure.height);
 break;
 }
 }
 drawScene();
 }
}

/* OpenGL code */

GLvoid resize(GLsizei width, GLsizei height)
{
 GLfloat aspect;

 glViewport(0, 0, width, height);

 aspect = (GLfloat) width / height;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, aspect, 3.0, 7.0);
 glMatrixMode(GL_MODELVIEW);
}

GLvoid createObjects()
{
 GLUquadricObj *quadObj;

 glNewList(GLOBE, GL_COMPILE);
 quadObj = gluNewQuadric ();

 gluQuadricDrawStyle (quadObj, GLU_LINE);
 gluSphere (quadObj, 1.5, 16, 16);
 glEndList();

 glNewList(CONE, GL_COMPILE);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_FILL);
 gluQuadricNormals (quadObj, GLU_SMOOTH);
 gluCylinder(quadObj, 0.3, 0.0, 0.6, 15, 10);
 glEndList();

 glNewList(CYLINDER, GL_COMPILE);
 glPushMatrix ();
 glRotatef ((GLfloat)90.0, (GLfloat)1.0, (GLfloat)0.0, (GLfloat)0.0);
 glTranslatef ((GLfloat)0.0, (GLfloat)0.0, (GLfloat)-1.0);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_FILL);
 gluQuadricNormals (quadObj, GLU_SMOOTH);
 gluCylinder (quadObj, 0.3, 0.3, 0.6, 12, 2);
 glPopMatrix ();
 glEndList();
}

GLvoid initializeGL(GLsizei width, GLsizei height)
{
 GLfloatmaxObjectSize, aspect;
 GLdouble near_plane, far_plane;

 glClearIndex((GLfloat)BLACK_INDEX);
 glClearDepth(1.0);

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_PROJECTION);
 aspect = (GLfloat) width / height;
 gluPerspective(45.0, aspect, 3.0, 7.0);
 glMatrixMode(GL_MODELVIEW);

 near_plane = 3.0;
 far_plane = 7.0;
 maxObjectSize = 3.0F;
 radius = near_plane + maxObjectSize/2.0;

 latitude = 0.0F;
 longitude = 0.0F;
 latinc = 6.0F;
 longinc = 2.5F;

 createObjects();
}

void polarView(GLdouble radius, GLdouble twist, GLdouble latitude,
 GLdouble longitude)
{
 glTranslated(0.0, 0.0, -radius);

 glRotated(-twist, 0.0, 0.0, 1.0);
 glRotated(-latitude, 1.0, 0.0, 0.0);
 glRotated(longitude, 0.0, 0.0, 1.0);

}

GLvoid drawScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();

 latitude += latinc;
 longitude += longinc;

 polarView(radius, 0, latitude, longitude);

 glIndexi(RED_INDEX);
 glCallList(CONE);

 glIndexi(BLUE_INDEX);
 glCallList(GLOBE);

 glIndexi(GREEN_INDEX);
 glPushMatrix();
 glTranslatef(0.8F, -0.65F, 0.0F);
 glRotatef(30.0F, 1.0F, 0.5F, 1.0F);
 glCallList(CYLINDER);
 glPopMatrix();

 glPopMatrix();

 SWAPBUFFERS;
}

The Program Ported to Win32
The following program is a Win32 OpenGL program with the same OpenGL code used in the
AUXDEMO.C sample program supplied with the Win32 SDK. Compare this program with the X Window
System OpenGL program in An X Window System OpenGL Program.

/*
 * Example of a Win32 OpenGL program.
 * The OpenGL code is the same as that used in
 * the X Window System sample
 */
#include <windows.h>
#include <GL/gl.h>
#include <GL/glu.h>

/* Windows globals, defines, and prototypes */
CHAR szAppName[]="Win OpenGL";
HWND ghWnd;
HDC ghDC;
HGLRC ghRC;

#define SWAPBUFFERS SwapBuffers(ghDC)
#define BLACK_INDEX 0
#define RED_INDEX 13
#define GREEN_INDEX 14
#define BLUE_INDEX 16
#define WIDTH 300
#define HEIGHT 200

LONG WINAPI MainWndProc (HWND, UINT, WPARAM, LPARAM);
BOOL bSetupPixelFormat(HDC);

/* OpenGL globals, defines, and prototypes */
GLfloat latitude, longitude, latinc, longinc;
GLdouble radius;

#define GLOBE 1
#define CYLINDER 2
#define CONE 3

GLvoid resize(GLsizei, GLsizei);
GLvoid initializeGL(GLsizei, GLsizei);
GLvoid drawScene(GLvoid);
void polarView(GLdouble, GLdouble, GLdouble, GLdouble);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)
{
 MSG msg;
 WNDCLASS wndclass;

 /* Register the frame class */
 wndclass.style = 0;
 wndclass.lpfnWndProc = (WNDPROC)MainWndProc;

 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInstance;
 wndclass.hIcon = LoadIcon (hInstance, szAppName);
 wndclass.hCursor = LoadCursor (NULL,IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wndclass.lpszMenuName = szAppName;
 wndclass.lpszClassName = szAppName;

 if (!RegisterClass (&wndclass))
 return FALSE;

 /* Create the frame */
 ghWnd = CreateWindow (szAppName,
 "Generic OpenGL Sample",
 WS_OVERLAPPEDWINDOW | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 WIDTH,
 HEIGHT,
 NULL,
 NULL,
 hInstance,
 NULL);

 /* make sure window was created */
 if (!ghWnd)
 return FALSE;

 /* show and update main window */
 ShowWindow (ghWnd, nCmdShow);

 UpdateWindow (ghWnd);

 /* animation loop */
 while (1) {
 /*
 * Process all pending messages
 */

 while (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE) == TRUE)
 {
 if (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 } else {
 return TRUE;
 }
 }
 drawScene();
 }
}

/* main window procedure */

LONG WINAPI MainWndProc (
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 LONG lRet = 1;
 PAINTSTRUCT ps;
 RECT rect;

 switch (uMsg) {

 case WM_CREATE:
 ghDC = GetDC(hWnd);
 if (!bSetupPixelFormat(ghDC))
 PostQuitMessage (0);

 ghRC = wglCreateContext(ghDC);
 wglMakeCurrent(ghDC, ghRC);
 GetClientRect(hWnd, &rect);
 initializeGL(rect.right, rect.bottom);
 break;

 case WM_PAINT:
 BeginPaint(hWnd, &ps);
 EndPaint(hWnd, &ps);
 break;

 case WM_SIZE:
 GetClientRect(hWnd, &rect);
 resize(rect.right, rect.bottom);
 break;

 case WM_CLOSE:
 if (ghRC)
 wglDeleteContext(ghRC);
 if (ghDC)
 ReleaseDC(hWnd, ghDC);
 ghRC = 0;
 ghDC = 0;

 DestroyWindow (hWnd);
 break;

 case WM_DESTROY:
 if (ghRC)
 wglDeleteContext(ghRC);
 if (ghDC)
 ReleaseDC(hWnd, ghDC);

 PostQuitMessage (0);
 break;

 case WM_KEYDOWN:
 switch (wParam) {

 case VK_LEFT:
 longinc += 0.5F;
 break;
 case VK_RIGHT:
 longinc -= 0.5F;
 break;
 case VK_UP:
 latinc += 0.5F;
 break;
 case VK_DOWN:
 latinc -= 0.5F;
 break;
 }

 default:
 lRet = DefWindowProc (hWnd, uMsg, wParam, lParam);
 break;
 }

 return lRet;
}

BOOL bSetupPixelFormat(HDC hdc)
{
 PIXELFORMATDESCRIPTOR pfd, *ppfd;
 int pixelformat;

 ppfd = &pfd;

 ppfd->nSize = sizeof(PIXELFORMATDESCRIPTOR);
 ppfd->nVersion = 1;
 ppfd->dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
 PFD_DOUBLEBUFFER;
 ppfd->dwLayerMask = PFD_MAIN_PLANE;
 ppfd->iPixelType = PFD_TYPE_COLORINDEX;
 ppfd->cColorBits = 8;
 ppfd->cDepthBits = 16;
 ppfd->cAccumBits = 0;
 ppfd->cStencilBits = 0;

 pixelformat = ChoosePixelFormat(hdc, ppfd);

 if ((pixelformat = ChoosePixelFormat(hdc, ppfd)) == 0)
 {
 MessageBox(NULL, "ChoosePixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 if (SetPixelFormat(hdc, pixelformat, ppfd) == FALSE)
 {
 MessageBox(NULL, "SetPixelFormat failed", "Error", MB_OK);
 return FALSE;
 }

 return TRUE;

}

/* OpenGL code */

GLvoid resize(GLsizei width, GLsizei height)
{
 GLfloat aspect;

 glViewport(0, 0, width, height);

 aspect = (GLfloat) width / height;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, aspect, 3.0, 7.0);
 glMatrixMode(GL_MODELVIEW);
}

GLvoid createObjects()
{
 GLUquadricObj *quadObj;

 glNewList(GLOBE, GL_COMPILE);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_LINE);
 gluSphere (quadObj, 1.5, 16, 16);
 glEndList();

 glNewList(CONE, GL_COMPILE);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_FILL);
 gluQuadricNormals (quadObj, GLU_SMOOTH);
 gluCylinder(quadObj, 0.3, 0.0, 0.6, 15, 10);
 glEndList();

 glNewList(CYLINDER, GL_COMPILE);
 glPushMatrix ();
 glRotatef ((GLfloat)90.0, (GLfloat)1.0, (GLfloat)0.0, (GLfloat)0.0);
 glTranslatef ((GLfloat)0.0, (GLfloat)0.0, (GLfloat)-1.0);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_FILL);
 gluQuadricNormals (quadObj, GLU_SMOOTH);
 gluCylinder (quadObj, 0.3, 0.3, 0.6, 12, 2);
 glPopMatrix ();
 glEndList();
}

GLvoid initializeGL(GLsizei width, GLsizei height)
{
 GLfloat maxObjectSize, aspect;
 GLdouble near_plane, far_plane;

 glClearIndex((GLfloat)BLACK_INDEX);
 glClearDepth(1.0);

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_PROJECTION);
 aspect = (GLfloat) width / height;
 gluPerspective(45.0, aspect, 3.0, 7.0);
 glMatrixMode(GL_MODELVIEW);

 near_plane = 3.0;
 far_plane = 7.0;
 maxObjectSize = 3.0F;
 radius = near_plane + maxObjectSize/2.0;

 latitude = 0.0F;
 longitude = 0.0F;
 latinc = 6.0F;
 longinc = 2.5F;

 createObjects();
}

void polarView(GLdouble radius, GLdouble twist, GLdouble latitude,
 GLdouble longitude)
{
 glTranslated(0.0, 0.0, -radius);
 glRotated(-twist, 0.0, 0.0, 1.0);
 glRotated(-latitude, 1.0, 0.0, 0.0);
 glRotated(longitude, 0.0, 0.0, 1.0);

}

GLvoid drawScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();

 latitude += latinc;
 longitude += longinc;

 polarView(radius, 0, latitude, longitude);

 glIndexi(RED_INDEX);
 glCallList(CONE);

 glIndexi(BLUE_INDEX);
 glCallList(GLOBE);

 glIndexi(GREEN_INDEX);
 glPushMatrix();
 glTranslatef(0.8F, -0.65F, 0.0F);
 glRotatef(30.0F, 1.0F, 0.5F, 1.0F);
 glCallList(CYLINDER);
 glPopMatrix();

 glPopMatrix();

 SWAPBUFFERS;
}

Porting Applications from IRIS GL
This section lists important differences between IRIS GL and OpenGL and describes the basic steps for
porting code from IRIS GL to OpenGL. For a complete list of the differences between IRIS GL and Open
GL, see IRIS GL and OpenGL Differences.

Porting IRIS GL programs to OpenGL for Windows NT and Windows 95 requires considerably more work
than converting OpenGL programs from the X Window System. While IRIS GL programs are designed to
run with specific hardware and software, OpenGL was designed for portability among various systems.

The following table lists some of the key differences between OpenGL and IRIS GL programs.

OpenGL Code IRIS GL Code
Operating system independent;
contains no functions for
windowing, event handling, buffer
allocation/management, and so
on.

Dependent on operating system;
windowing-system functions are
mixed with rendering functions.
There is no windows manager in
IRIS GL.

Uses a standard, common
naming convention. OpenGL
functions and defined types begin
with a "gl" prefix to prevent
conflicts with other libraries.

Does not use a common naming
convention for functions and
defined types.

Manages state variables (such as
color, fog, texture, lighting, and so
on) directly and consistently.
Does not use tables to load state-
variable values.

Uses tables to manage state
variables and must bind variables
to table values.

Display lists cannot be edited. Display lists can be edited.
Does not provide a file format for
fonts.

Provides functions to handle fonts
and text strings and a file format for
fonts.

Includes a GL Utility (GLU) library
that contains additional functions
and routines (such as NURBS
and quadratic rendering routines).

Does not support the GLU library.

Use the following general procedure to port your IRIS GL
programs to OpenGL
1. Rewrite any code that makes calls to a window manager, window configuration, device, or event, or

where you load a color map to equivalent Win32 code. Rewriting an application from one operating
system to another can be complex and difficult. This subject is beyond the scope of this section.

2. Locate any code that uses IRIS GL functions and routines. Translate these functions to their
equivalent OpenGL functions. For a complete listing of IRIS GL functions and routines and their
equivalent OpenGL counterparts, see OpenGL Functions and Their IRIS GL Equivalents.

3. Change IRIS GL code as described in Special IRIS GL Porting Issues.

Special IRIS GL Porting Issues
The following topics describe techniques for porting specific parts of your IRIS GL code to OpenGL code.

Porting greset
OpenGL replaces the IRIS GL function, greset, with the functions, glPushAttrib and glPopAttrib. Use
these functions to save and restore groups of state variables. For example,

void glPushAttrib(GLbitfield mask);

This example takes a bitwise OR of symbolic constants, indicating which groups of state variables to push
onto an attribute stack. Each constant refers to a group of state variables. The following table shows the
attribute groups with their equivalent symbolic constant names. For a complete list of the OpenGL state
variables associated with each constant, see glPushAttrib.

Attribute Constant
accumulation buffer clear value GL_ACCUM_BUFFER_BIT
color buffer GL_COLOR_BUFFER_BIT
current GL_CURRENT_BIT
depth buffer GL_DEPTH_BUFFER_BIT
enable GL_ENABLE_BIT
evaluators EGL_VAL_BIT
fog GL_FOG_BIT
GL_LIST_BASE setting GL_LIST_BIT
hint variables GL_HINT_BIT
lighting variables GL_LIGHTING_BIT
line drawing mode GL_LINE_BIT
pixel mode variables GL_PIXEL_MODE_BIT
point variables GL_POINT_BIT
polygon GL_POLYGON_BIT
polygon stipple GL_POLYGON_STIPPLE_BIT
scissor GL_SCISSOR_BIT
stencil buffer GL_STENCIL_BUFFER_BIT
texture GL_TEXTURE_BIT
transform GL_TRANSFORM_BIT
viewport GL_VIEWPORT_BIT
¾ GL_ALL_ATTRIB_BITS

To restore the values of the state variables to those saved with the last glPushAttrib, simply call
glPopAttrib. The variables you didn't save will remain unchanged. The attribute stack has a finite depth
of at least 16.

Porting IRIS GL "Get" Functions
IRIS GL "get" functions take the following form:

int getthing();

and

int getthings(int *a, int *b);

Your IRIS GL code probably includes get function calls that look something like:

thing = getthing();
if (getthing() == THING) { /* some stuff here */ }
getthings (&a, &b);

In OpenGL you use one of the following four types of glGet functions in place of equivalent IRIS GL get
functions:

· glGetBooleanv
· glGetIntegerv
· glGetFloatv
· glGetDoublev

The functions have the following syntax:

glGet<Datatype>v(value, *data);

where value is of type GLenum and data is of type GLdatatype. When you call glGet and it returns a
type different from the type expected, the type is converted appropriately. For a complete list of glGet
parameters, see glGet.

Porting Code that Requires a Current Graphics Position
OpenGL does not maintain a current graphics position. IRIS GL functions that depend on the current
graphics position, such as move, draw, and rmv, have no equivalents in OpenGL.

Older versions of IRIS GL included drawing commands that relied upon the current graphics position,
though their use has been discouraged. You will need to rewrite your code if you relied on the current
graphics position in any way, or used any of the following routines:

· draw and move
· pmv, pdr, and pclos
· rdr, rmv, rpdr, and rpmv
· getgpos

OpenGL has a concept of raster position that corresponds to IRIS GL's current character position. For
more information on raster positioning, see Porting Pixel Operations.

Porting Screen and Buffer Clearing Commands
OpenGL replaces a variety of IRIS GL clear functions (such as zclear, aclear, sclear, and so on) with a
single function, glClear. Specify exactly what you want to clear by passing masks to glClear.

Keep the following points in mind when porting screen and buffer commands:

· OpenGL maintains clearing colors separately from drawing colors, with calls like glClearColor and
glClearIndex. Be sure to set the clear color for each buffer before clearing.

· Instead of using one of several differently named clear calls, you now clear several buffers with one
call, glClear, by ORing together buffer masks. For example, czclear is replaced by:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

· IRIS GL references the polygon stipple and the color writemask. OpenGL ignores the polygon stipple
but references the color writemask. (The czclear function ignores both the polygon stipple and the
color writemask.)

The following table lists the various IRIS GL clear functions with their equivalent OpenGL functions.

IRIS GL Call OpenGL Call Meaning
acbuf(AC_CLEA
R)

glClear(GL_ACCUM_BUFFER_BIT) Clear the
accumulation buffer.

¾ glClearColor Set the RGBA clear
color.

¾ glClearIndex Set the clear-color
index.

clear glClear(GL_COLOR_BUFFER_BIT) Clear the color buffer.
¾ glClearDepth Specify the clear

value for the depth
buffer.

zclear glClear(GL_DEPTH_BUFFER_BIT) Clear the depth
buffer.

czclear glClear(GL_COLOR_BUFFER_BIT |
 GL_DEPTH_BUFFER_BIT)

Clear the color buffer
and the depth buffer.

¾ glClearAccum Specify clear values
for the accumulation
buffer.

¾ glClearStencil Specify the clear
value for the stencil
buffer.

sclear glClear(GL_STENCIL_BUFFER_BIT)Clear the stencil
buffer.

When your IRIS GL code uses both gclear and sclear, you can combine them into a single glClear
call¾this can improve your program's performance.

Porting Matrix and Transformation Functions
IRIS GL and OpenGL handle matrices and transformations in a similar manner. But there are several
differences to keep in mind when porting code from IRIS GL:

· In OpenGL you are always in double-matrix mode; there is no single-matrix mode.
· Angles are measured in degrees, instead of tenths of degrees.
· Projection matrix calls, like glFrustum and glOrtho, now multiply onto the current matrix, instead of

being loaded onto the current matrix.
· The OpenGL function, glRotate, is very different from rotate. You can rotate around any arbitrary

axis, instead of being confined to the x-, y-, and z- axes. For example, you can translate:
rotate(200*(i+1), 'z');

to:
glRotate(.1*(200*(i+1), 0.0, 0.0, 1.0);

When translating from rotate to glRotate you switch to degrees from tenths of degrees and replace
'z' with a vector for the z-axis.

· OpenGL has no equivalent to the polarview function. You can replace it easily with a translation and
three rotations. For example, you can translate:
polarview(distance, azimuth, incidence, twist);

to:
glTranslatef(0.0, 0.0, -distance);
glRotatef(-twist * 10.0, 0.0, 0.0, 1.0);
glRotatef(-incidence * 10.0, 1.0, 0.0, 0.0);
glRotatef(-azimuth * 10.0, 0.0, 0.0, 1.0);

The following table lists the OpenGL matrix functions and their equivalent IRIS GL functions.

IRIS GL FunctionOpenGL
Function

Meaning

mmode glMatrixMode Set current matrix mode.
¾ glLoadIdentity Replace current matrix with the

identity matrix.
loadmatrix glLoadMatrixf,

glLoadMatrixd
Replace current matrix with the
specified matrix.

multmatrix glMultMatrixf,
glMultMatrixd

Post-multiply current matrix with
the specified matrix (note that
multmatrix pre-multiplied).

mapw, mapw2 gluUnProject Project world-space coordinates
to object space (see also
gluProject).

ortho glOrtho Multiply current matrix by an
orthographic projection matrix.

ortho2 gluOrtho2D Define a two-dimensional
orthographic projection matrix.

perspective gluPerspective Define a perspective projection
matrix.

picksize gluPickMatrix Define a picking region.

popmatrix glPopMatrix Pop current matrix stack,
replacing the current matrix with
the one below it.

pushmatrix glPushMatrix Push current matrix stack down
by one, duplicating the current
matrix.

rotate,
rot

glRotated,
glRotatef

Rotate current coordinate
system by the given angle about
the vector from the origin
through the given point. Note
that rotate rotated only about
the x-, y-, and z-axes.

scale glScaled,
glScalef

Multiply current matrix by a
scaling matrix.

translate glTranslatef,
glTranslated

Move coordinate-system origin
to the point specified, by
multiplying the current matrix by
a translation matrix.

window glFrustum Given coordinates for clipping
planes, multiply the current
matrix by a perspective matrix.

OpenGL has three matrix modes, which are set with glMatrixMode. The following table lists the modes
available as parameters for glMatrixMode.

IRIS GL Matrix
Mode

OpenGL Mode Meaning Min Stack
Depth

MTEXTURE GL_TEXTURE Operate on the
texture matrix
stack.

2

MVIEWING GL_MODELVIE
W

Operate on the
model view
matrix stack.

32

MPROJECTION GL_PROJECTIO
N

Operate on the
projection matrix
stack.

2

Porting MSINGLE Mode Code
OpenGL has no equivalent for MSINGLE, single-matrix mode. Though use of this mode has been
discouraged, it is the default for IRIS GL. If your IRIS GL program uses the single-matrix mode, you need
to rewrite it to use double-matrix mode only. OpenGL is always in double-matrix mode, and is initially in
GL_MODELVIEW mode.

Most IRIS GL code in MSINGLE mode looks like this:

projectionmatrix();

where projectionmatrix is one of: ortho, ortho2, perspective, or window. To port to OpenGL, replace
the MSINGLE-mode projectionmatrix function with:

glMatrixMode(GL_PROJECTION);
glLoadMatrix(identity matrix);

/* call one of these functions here: */
/* glFrustrum(), glOrtho(), glOrtho2(), gluPerspective()}; */

glMatrixMode(GL_MODELVIEW);
glLoadMatrix(identity matrix);

Porting Functions that Get Matrices and
Transformations
The following table lists the IRIS GL functions that get the state of matrices and transformations and their
OpenGL equivalents.

IRIS GL Matrix
Query

OpenGL glGet Matrix Query Meaning

getmmode GL_MATRIX_MODE Return the current
matrix mode.

getmatrix in
MVIEWING mode

GL_MODELVIEW_MATRIX Return a copy of
the current model-
view matrix.

getmatrix in
MPROJECTION
mode

GL_PROJECTION_MATRIX Return a copy of
the current
projection matrix.

getmatrix in
MTEXTURE mode

GL_TEXTURE_MATRIX Return a copy of
the current texture
matrix.

Not applicable. GL_MAX_MODELVIEW_
STACK_DEPTH

Return maximum
supported depth of
the model-view
matrix stack.

Not applicable. GL_MAX_PROJECTION_
STACK_DEPTH

Return maximum
supported depth of
the projection
matrix stack.

Not applicable. GL_MAX_TEXTURE_
STACK_DEPTH

Return maximum
supported depth of
the texture matrix
stack.

Not applicable. GL_MODELVIEW_
STACK_DEPTH

Returns number of
matrices on the
model view stack.

Not applicable. GL_PROJECTION_
STACK_DEPTH

Returns number of
matrices on the
projection stack.

Not applicable. GL_TEXTURE_STACK_
DEPTH

Returns number of
matrices on the
texture stack.

Porting Viewports, Screenmasks, and Scrboxes
The following IRIS GL viewport functions have no OpenGL equivalent:

· reshapeviewport
· scrbox
· getscrbox

With the IRIS GL viewport function, you specify the x coordinates (in pixels) for the left and right of a
viewport rectangle and the y coordinates for the top and bottom. With the OpenGL glViewport function,
however, you specify the x and y coordinates (in pixels) of the lower-left corner of the viewport rectangle
along with its width and height.

The following table lists IRIS GL viewport functions and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
viewport(left, right,
        bottom, top)

glViewport(x, y, width, height) Set the
viewport.

popviewport
pushviewport

glPopAttrib
glPushAttrib(GL_VIEWPORT_
BIT)

Push and pop
the stack.

getviewport glGet(GL_VIEWPORT) Returns
viewport
dimensions.

Porting Clipping Planes
OpenGL implements clipping planes similarly to IRIS GL. In addition, in OpenGL you can query clipping
planes. The following table lists IRIS GL clipping plane functions and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
clipplane(i, CP_ON,
params)

glEnable(GL_CLIP_PLAN
Ei)

Enable clipping
on plane i.

clipplane(i,
CP_DEFINE, plane)

glClipPlane(GL_CLIP_PL
ANEi, plane)

Define clipping
plane.

¾ glGetClipPlane Returns
clipping plane
equation.

¾ glIsEnabled(GL_CLIP_PL
ANEi)

Returns true if
clip plane i is
enabled.

scrmask glScissor Defines the
scissor box.

getscrmask glGet(GL_SCISSOR_BOX)Return the
current scissor
box.

To turn on the scissor test, call glEnable using GL_SCISSOR_BOX as the parameter.

Porting Drawing Functions
The following sections discuss how to port IRIS GL drawing primitives.

The IRIS GL Sphere Library
OpenGL doesn't support the IRIS GL sphere library. You can replace your sphere library calls with
quadrics routines from the GLU library. For more information about the GLU library, see the Open GL
Programming Guide and OpenGL Utility library.

The following table lists the OpenGL quadrics functions.

OpenGL Function Meaning
gluNewQuadric Create a new quadric object.
gluDeleteQuadric Delete a quadric object.
gluQuadricCallback Associate a callback with a quadric

object, for error handling.
gluQuadricNormals Specify normals: no normals, one

per face, or one per vertex.
gluQuadricOrientation Specify direction of normals:

outward or inward.
gluQuadricTexture Turn texture-coordinate generation

on or off.
gluQuadricDrawstyle Specify drawing style: polygons,

lines, points, and so on.
gluSphere Draw a sphere.
gluCylinder Draw a cylinder or cone.
gluPartialDisk Draw an arc.
gluDisk Draw a circle or disk.

You can use one quadric object for all quadrics you want to render in similar ways. The following code
sample uses two quadric objects to draw four quadrics, two of them textured.

GLUquadricObj *texturedQuad, *plainQuad;

texturedQuad = gluNewQuadric(void);
gluQuadricTexture(texturedQuad, GL_TRUE);
gluQuadricOrientation(texturedQuad, GLU_OUTSIDE);
gluQuadricDrawStyle(texturedQuad, GLU_FILL);

plainQuad = gluNewQuadric(void);
gluQuadricDrawStyle(plainQuad, GLU_LINE);

glColor3f (1.0, 1.0, 1.0);

gluSphere(texturedQuad, 5.0, 20, 20);
glTranslatef(10.0, 10.0, 0.0);
gluCylinder(texturedQuad, 2.5, 5, 5, 10, 10);
glTranslatef(10.0, 10.0, 0.0);
gluDisk(plainQuad, 2.0, 5.0, 10, 10);
glTranslatef(10.0, 10.0, 0.0);
gluSphere(plainQuad, 5.0, 20, 20);

Porting v Functions
In IRIS GL, you use variations on the v function to specify vertices. The equivalent OpenGL function is
glVertex: Below are examples of glVertex.

glVertex2[d|f|i|s][v](x, y);
glVertex3[d|f|i|s][v](x, y, z);
glVertex4[d|f|i|s][v](x, y, z, w);

The glVertex function takes suffixes the same way other OpenGL calls do. The vector versions of the call
take arrays of the proper size as arguments. In the 2-D version, z=0 and w=1. In the 3-D version, w=1.

Porting bgn/end Commands
IRIS GL uses the begin/end paradigm but has a different function for each graphics primitive. For
example, you probably use bgnpolygon and endpolygon to draw polygons, and bgnline and endline to
draw lines. In OpenGL, you use the glBegin/glEnd structure for both. In OpenGL you draw most
geometric objects by enclosing a series of functions that specify vertices, normals, textures, and colors
between pairs of glBegin and glEnd calls. For example:

void glBegin(GLenum mode) ;
 /* vertex list, colors, normals, textures, materials */
void glEnd(void);

The glBegin function takes a single parameter that specifies the drawing mode, and thus the primitive.
Here's an OpenGL code sample that draws a polygon and then a line:

glBegin(GL_POLYGON) ;
 glVertex2f(20.0, 10.0);
 glVertex2f(10.0, 30.0);
 glVertex2f(20.0, 50.0);
 glVertex2f(40.0, 50.0);
 glVertex2f(50.0, 30.0);
 glVertex2f(40.0, 10.0);
glEnd();
glBegin(GL_LINES) ;
 glVertex2i(100,100);
 glVertex2i(500,500);
glEnd();

With OpenGL, you draw different geometric objects by specifying different parameters for glBegin. The
following table lists the OpenGL glBegin parameters that correspond to equivalent IRIS GL functions.

IRIS GL FunctionValue of glBegin
Mode

Meaning

bgnpoint GL_POINTS Individual points.
bgnline GL_LINE_STRIP Series of connected line

segments.
bgnclosedline GL_LINE_LOOP Series of connected line

segments, with a segment
added between first and last
vertices.

¾ GL_LINES Pairs of vertices interpreted
as individual line segments.

bgnpolygon GL_POLYGON Boundary of a simple convex
polygon.

¾ GL_TRIANGLES Triples of vertices interpreted
as triangles.

bgntmesh GL_TRIANGLE_ST
RIP

Linked strips of triangles.

¾ GL_TRIANGLE_FANLinked fans of triangles.
¾ GL_QUADS Quadruples of vertices

interpreted as quadrilaterals.
bgnqstrip GL_QUAD_STRIP Linked strips of

quadrilaterals.

For a detailed discussion of the differences between triangle meshes, strips, and fans, see Porting
Triangles.

There is no limit to the number of vertices you can specify between a glBegin/glEnd pair.

In addition to specifying vertices inside a glBegin/glEnd pair, you can specify a current normal, current
texture coordinates, and a current color. The following table lists the commands valid inside a
glBegin/glEnd pair.

IRIS GL Function OpenGL Function Meaning
v2, v3, v4 glVertex Set vertex coordinates.
RGBcolor, cpack glColor Set current color.
color glIndex Set current color index.
n3f glNormal Set normal vector

coordinates.
¾ glEvalCoord Evaluate enabled one-

and two-dimensional
maps.

callobj glCallList,
glCallLists

Execute display list(s).

t2 glTexCoord Set texture coordinates.
¾ glEdgeFlag Control drawing edges.
lmbind glMaterial Set material properties.

Note    If you use any OpenGL function other than those listed in the preceding table inside a
glBegin/glEnd pair, you'll get unpredictable results, or possibly an error.

Porting Points
OpenGL has no command to draw a single point. Otherwise, porting point functions is straightforward.
The following table lists IRIS GL functions for drawing points and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
pnt ¾ Draw a single point.
bgnpoint,
endpoint

glBegin(GL_POINTS),
glEnd

Interpret vertices as
points.

pntsize glPointSize Set point size in
pixels.

pntsmooth glEnable(GL_POINT_SMO
OTH)

Turn on point
antialiasing. (For
more information on
point antialiasing,
see Porting
Antialiasing
Functions.)

For information about related get functions, see glPointSize.

Porting Lines
Porting IRIS GL code that draws lines is fairly straightforward, though you should note the differences in
the way OpenGL stipples. The following table lists IRIS GL functions for drawing lines and their equivalent
OpenGL functions.

IRIS GL Function OpenGL Function Meaning
bgnclosedline,
endclosedline

glBegin(GL_LINE_LOOP)
glEnd

Draw a closed line.

bgnline glBegin(GL_LINE_STRIP) Draw line segments.
linewidth glLineWidth Set line width.
getlwidth glGet(GL_LINE_WIDTH) Return current line

width.
deflinestyle,
setlinestyle

glLineStipple Specify a line stipple
pattern.

lsrepeat factor argument of glLineStipple Set a repeat factor
for the line style.

getlstyle glGet(GL_LINE_STIPPLE_PATTERN
)

Return line stipple
pattern.

getlsrepeat glGet(GL_LINE_STIPPLE_REPEAT) Return repeat factor.
linesmooth,
smoothline

glEnable(GL_LINE_SMOOTH) Turn on line
antialiasing (For
more information on
antialiasing, see
Porting Antialiasing
Functions.)

OpenGL doesn't use tables for line stipples; it maintains only one line-stipple pattern. You can use
glPushAttrib and glPopAttrib to switch between different stipple patterns.

Older IRIS GL line style functions (such as draw, lsbackup, getlsbackup, and so on) are not supported
by OpenGL.

For information on drawing antialiased lines, see Porting Antialiasing Functions.

Porting Polygons and Quadrilaterals
Keep the following points in mind when porting polygons and quadrilaterals:

· There is no direct equivalent for concave(TRUE). Instead you can use the tessellation routines in the
GLU, described in Tessellating Polygons.

· Polygon modes are set differently.
· These polygon drawing functions have no direct equivalents in OpenGL: the poly family of routines;

the polf family of routines; pmv, pdr, and pclos; rpmv and rpdr; splf; and spclos.

If your IRIS GL code uses these functions, you'll have to rewrite the code using glBegin(GL_POLYGON).

The following table lists the IRIS GL polygon drawing functions and their equivalent OpenGL functions.

IRIS GL
Function

OpenGL Function Meaning

bgnpolygon
endpolygon

glBegin(GL_POLYGON)
glEnd

Vertices define boundary
of a simple convex
polygon.

¾ glBegin(GL_QUADS)
glEnd

Interpret quadruples of
vertices as quadrilaterals.

bgnqstrip
endqstrip

glBegin(GL_QUAD
_STRIP)
glEnd

Interpret vertices as
linked strips of
quadrilaterals.

¾ glEdgeFlag
polymode glPolygonMode Set polygon drawing

mode.
rect
rectf

glRect Draw a rectangle.

sbox
sboxf

¾ Draw a screen-aligned
rectangle.

Porting Polygon Modes
The OpenGL function glPolygonMode lets you specify which side of a polygon (the back or the front) the
mode applies to. Its syntax is:

void glPolygonMode(GLenum face, GLenum mode);

where face is one of:

GL_FRONT mode which applies to front-facing
polygons

GL_BACK mode which applies to back-facing
polygons

GL_FRONT_AND_BACK mode which applies to both front- and
back-facing polygons

The GL_FRONT_AND_BACK mode is equivalent to the IRIS GL polymode function. The following table
lists IRIS GL polygon modes and their equivalent OpenGL modes.

IRIS GL Mode OpenGL Mode Meaning
PYM_POINT GL_POINT Draw vertices as points.

PYM_LINE GL_LINE Draw boundary edges as line
segments.

PYM_FILL GL_FILL Draw polygon interior filled.
PYM_HOLLOW ¾ Fill only interior pixels at the

boundaries.

Porting Polygon Stipples
When porting IRIS GL polygon stipples, keep the following points in mind:

· OpenGL doesn't use tables for polygon stipples; only one stipple pattern is kept. You can use display
lists to store different stipple patterns.

· The OpenGL polygon stipple bitmap size is always a 32x32 bit pattern.
· Stipple encoding is affected by glPixelStore.

For more information on porting polygon stipples, see Porting Pixel Operations.

The following table lists IRIS GL polygon stipple functions and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
defpattern glPolygonStipple Set the stipple pattern.
setpattern ¾ OpenGL keeps only one

polygon stipple pattern.
getpattern glGetPolygonStipple Return the stipple bitmap

(used to return an index).

In OpenGL, you enable and disable polygon stippling by passing GL_POLYGON_STIPPLE as a
parameter for glEnable and glDisable.

The following OpenGL code sample demonstrates polygon stippling:

void display(void)
{
 GLubyte fly[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
 0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
 0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
 0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
 0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
 0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
 0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
 0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
 0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,
 0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
 0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08
 };
 GLubyte halftone[] = {
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,

 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55
 };

 glClear (GL_COLOR_BUFFER_BIT);

/* draw all polygons in white*/
 glColor3f (1.0, 1.0, 1.0);

/* draw one solid, unstippled rectangle,*/
/* then two stippled rectangles*/
 glRectf (25.0, 25.0, 125.0, 125.0);
 glEnable (GL_POLYGON_STIPPLE);
 glPolygonStipple (fly);
 glRectf (125.0, 25.0, 225.0, 125.0);
 glPolygonStipple (halftone);
 glRectf (225.0, 25.0, 325.0, 125.0);
 glDisable (GL_POLYGON_STIPPLE);

 glFlush ();
}

Porting Tessellated Polygons
In IRIS GL, you use concave(TRUE) and then bgnpolygon to draw concave polygons. The OpenGL
GLU includes functions you can use to draw concave polygons.

To draw a concave polygon with OpenGL
1. Create a tessellation object.
2. Define callbacks that will be used to process the triangles generated by the tessellator.
3. Specify the concave polygon to be tessellated.

The following table lists the OpenGL functions for drawing tessellated polygons.

OpenGL GLU Function Meaning
gluNewTess Create a new tessellation object.
gluDeleteTess Delete a tessellation object.
gluTessCallback ¾

gluBeginPolygon Begin the polygon specification.
gluTessVertex Specify a polygon vertex in a contour.
gluNextContour Indicate that the next series of

vertices describe a new contour.

gluEndPolygon End the polygon specification.

Porting Triangles
You can draw three types of triangles in OpenGL: separate triangles, triangle strips, and triangle fans.

OpenGL has no equivalent for the IRIS GL swaptmesh function. You can achieve the same effect using a
combination of triangles, triangle strips, and triangle fans.

The following table lists the IRIS GL functions for drawing triangles and their equivalent OpenGL
functions.

IRIS GL
Function

Equivalent glBegin
Parameter

Meaning

¾ GL_TRIANGLES Triples of vertices
interpreted as triangles.

bgntmesh
endtmesh

GL_TRIANGLE_STRIP Linked strips of triangles.

¾ GL_TRIANGLE_FAN Linked fans of triangles.

Porting Arcs and Circles
With OpenGL, filled arcs and circles are drawn with the same calls as unfilled arcs and circles. The
following table lists the IRIS GL arc and circle functions and their equivalent OpenGL (GLU) functions.

IRIS GL Function OpenGL Function Meaning
arc
arcf

gluPartialDisk Draw an arc.

circ
circf

gluDisk Draw a circle or
disk.

You can do some things with OpenGL arcs and circles that you can't do with IRIS GL. OpenGL calls arcs
and circles, disks and partial disks respectively.

When porting arcs and circles, keep the following points about OpenGL in mind:

· Angles are measured in degrees, and not in tenths of degrees.
· The start angle is measured from the positive y-axis, and not from the x-axis.
· The sweep angle is now clockwise instead of counterclockwise.

Porting Spheres
When porting spheres to OpenGL, keep the following points in mind:

· You cannot control the type of primitives used to draw the sphere. You can control drawing precision
in another way: use the slices and stacks parameters. Slices are longitudinal; stacks are latitudinal.

· Spheres are drawn centered at the origin. Instead of specifying the location, as you do with the IRIS
GL sphdraw function, precede a call to the GLU gluSphere function with a translation.

· The sphere library is not yet available for OpenGL.

The following table lists the IRIS GL functions for drawing spheres and their equivalent GLU functions
where available.

IRIS GL Function GLU Function Meaning
sphobj gluNewQuadric Create a new sphere

object.
sphfree gluDeleteQuadric Delete sphere object and

free memory used.
sphdraw gluSphere Draw a sphere.
sphmode ¾ Set sphere attributes.
sphrotmatrix ¾ Control sphere orientation.
sphgnpolys ¾ Return number of

polygons in current
sphere.

Porting Color, Shading, and Writemask Code
When porting color, shading, and writemask code to OpenGL, keep the following points in mind:

· Though you can set color-map indexes with the OpenGL glIndex function, OpenGL does not have a
function for loading color-map indexes.

· Color values are normalized to their data type. (For information about color values, see glColor).
· There is no simple equivalent for cpack.
· You may have to translate code that includes the c or color functions to glClearColor or

glClearIndex instead of glColor or glIndex.
· The RGBA writemask applies to each component but not for each bit.
· IRIS GL provides defined color constants: BLACK, BLUE, RED, GREEN, MAGENTA, CYAN,

YELLOW, and WHITE. OpenGL does not provide these constants.

Porting Color Calls
The following table lists IRIS GL color functions and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
c glColor Set RGB color.
color glIndex Set the color

index.
getcolor glGet(GL_CURRENT_INDEX) Return the current

color index.
getmcolor ¾ Get a copy of the

RGB values for a
color map entry.

gRGBcolor glGet(GL_CURRENT_COLOR
)

Get the current
RGB color values.

mapcolor ¾

RGBcolor glColor Set RGB color.
writemask glIndexMask Set the color-index

mode color mask.
wmpack
RGBwritemask

glColorMask Set the RGB color
mode mask.

getwritemask glGet(GL_COLOR_WRITEMA
SK)
glGet(GL_INDEX_WRITEMAS
K)

Get the color
mask.

gRGBmask glGet(GL_COLOR_WRITEMA
SK)

Get the color
mask.

zwritemask glDepthMask ¾

   

Note    Be careful when replacing zwritemask with glDepthMask; glDepthMask takes a Boolean
argument, whereas zwritemask takes a bit field.

If you want to use multiple color maps, you need to use the appropriate Win32 color map functions.
Therefore, multimap, onemap, getcmmode, setmap, and getmap have no OpenGL equivalents.

Porting Shading Models
Like IRIS GL, OpenGL lets you switch between smooth (Gouraud) shading and flat shading. The following
table lists the IRIS GL shading and dithering functions and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
shademodel(FLAT) glShadeModel(GL_FLAT) Do flat shading.
shademodel(GOURAUD)glShadeModel(GL_SMOOTH) Do smooth shading.
getsm glGet(GL_SHADE_MODEL) Return current

shade model.
dither(DT_ON)
dither(DT_OFF)

glEnable(GL_DITHER)
glDisable(GL_DITHER)

Turn dithering
on/off.

Porting Pixel Operations
When porting code that involves pixel operations, keep the following points in mind:

· Logical pixel operations are not applied to RGBA color buffers. For more information, see glLogicOp.
· In general, IRIS GL uses the format ABGR for pixels, whereas OpenGL uses RGBA. You can change

the format with glPixelStore.
· When porting lrectwrite functions, be careful to note where lrectwrite is writing (for example, it could

be writing to the depth buffer).

OpenGL gives you some additional flexibility in pixel operations. The following table lists IRIS GL
functions for pixel operations and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
lrectread,
rectread,
readRGB

glReadPixels Read a block of pixels
from the frame buffer.

lrectwrite,
rectwrite

glDrawPixels Write a block of pixels to
the frame buffer.

rectcopy glCopyPixels Copy pixels in the frame
buffer.

rectzoom glPixelZoom Specify pixel zoom
factors for glDrawPixels
and glCopyPixels.

cmov glRasterPos Specify raster position for
pixel operations.

readsource glReadBuffer Select a color buffer
source for pixels.

pixmode glPixelStore,
glPixelTransfer

Set pixel storage modes.
Set pixel transfer modes.

logicop glLogicOp Specify a logical
operation for pixel writes.

¾ glEnable(GL_LOGIC_O
P)

Turn on pixel logic
operations.

For a complete list of possible logical operations, see glLogicOp.

This IRIS GL code sample shows a typical pixel write:

unsigned long *packedRaster;
..
packedRaster[k] = 0x00000000;
..
lrectwrite(0, 0, xSize, ySize, packedRaster);

The preceding code looks like this when translated to OpenGL:

glRasterPos2i(0, 0);
glDrawPixels(xSize + 1, ySize + 1, GL_RGBA, GL_UNSIGNED_BYTE,
 packedRaster);

Porting Depth Cueing and Fog Commands
When porting depth-cueing and fog commands, keep the following points in mind:

· The IRIS GL call, fogvertex, sets a mode and the parameters affecting that mode. In OpenGL, you
call glFog once to set the mode, and then again twice or more to set various parameters.

· In OpenGL, depth cueing is not a separate feature. Use linear fog instead of depth cueing. (This
section gives an example of how to do this.) The following IRIS GL functions have no direct OpenGL
equivalent:
depthcue
lRGBrange
lshaderange
getdcm

· To adjust fog quality, use glHint(GL_FOG_HINT).

The following table lists the IRIS GL functions for managing fog and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
fogvertex glFog Set various fog

parameters.
fogvertex(FG_ON) glEnable(GL_FOG) Turn fog on.
fogvertex(FG_OFF) glDisable(GL_FOG) Turn fog off.
depthcue glFog(GL_FOG_MO

D, GL_LINEAR)
Use linear fog for depth
cueing.

The following table lists the parameters you can pass to glFog.

Fog Parameter Meaning Default
GL_FOG_DENSITY Fog density. 1.0
GL_FOG_START Near distance for linear fog.0.0
GL_FOG_END Far distance for linear fog. 1.0
GL_FOG_INDEX Fog color index. 0.0
GL_FOG_COLOR Fog RGBA color. (0, 0, 0, 0)
GL_FOG_MODE Fog mode. See the following

table.

The fog-density parameter of OpenGL differs from the one in IRIS GL. They are related as follows:

· if fogMode = EXP2
openGLfogDensity = (irisGLfogDensity)    (sqrt(- log(1 / 255)))

· if fogMode =    EXP
openGLfogDensity = (irisGLfogDensity)    (- log(1 / 255))

where sqrt is the square root operation, log is the natural logarithm, irisGLfogDensity is the IRIS GL fog
density, and openGLfogDensity is the OpenGL fog density.

To switch between calculating fog in per-pixel mode and per-vertex mode, use glHint(GL_FOG_HINT,
hintMode). Two hint modes are available:

· GL_NICEST              per-pixel fog calculation
· GL_FASTEST        per-vertex fog calculation

The following table lists the IRIS GL fog modes and their OpenGL equivalents.

IRIS GL Fog
Mode

OpenGL Fog
Mode

Hint Mode Meaning

FG_VTX_EXP,
FG_PIX_EXP

GL_EXP GL_FASTEST,
GL_NICEST

Heavy fog
mode
(default).

FG_VTX_EXP2,
FG_PIX_EXP2

GL_EXP2 GL_FASTEST,
GL_NICEST

Haze mode.

FG_VTX_LIN,
FG_PIX_LIN

GL_LINEAR GL_FASTEST,
GL_NICEST

Linear fog
mode. (Use
for depth
cueing.)

The following code example demonstrates depth cueing in OpenGL:

/*
 * depthcue.c
 * This program draws a wire frame model, which uses
 * intensity (brightness) to give clues to distance
 * Fog is used to achieve this effect
 */
#include <GL/gl.h>
#include <GL/glu.h>
#include "aux.h"

/* Initialize linear fog for depth cueing
 */
void myinit(void)
{
 GLfloat fogColor[4] = {0.0, 0.0, 0.0, 1.0};

 glEnable(GL_FOG);
 glFogi (GL_FOG_MODE, GL_LINEAR);
 glHint (GL_FOG_HINT, GL_NICEST); /* per pixel */
 glFogf (GL_FOG_START, 3.0);
 glFogf (GL_FOG_END, 5.0);
 glFogfv (GL_FOG_COLOR, fogColor);
 glClearColor(0.0, 0.0, 0.0, 1.0);

 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
}

/* display() draws an icosahedron
 */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 auxWireIcosahedron(1.0);
 glFlush();
}

void myReshape(GLsizei w, GLsizei h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 3.0, 5.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity ();
 glTranslatef (0.0, 0.0, -4.0); /*move object into view*/
}
/* Main Loop
 */
int main(int argc, char** argv)
{
 auxInitDisplayMode (AUX_SINGLE | AUX_RGBA | AUX_DEPTH);
 auxInitPosition (0, 0, 400, 400);
 auxInitWindow (argv[0]);
 myinit();
 auxReshapeFunc (myReshape);
 auxMainLoop(display);
}

Porting Curve and Surface Functions
OpenGL doesn't support equivalents to the IRIS GL functions for curves and surface patches. You'll need
to rewrite your code if it includes any of the following calls:

· defbasis
· curvebasis, curveprecision, crv, crvn, rcrv, rcrvn, and curveit
· patchbasis, patchcurves, patchprecision, patch, and rpatch

Porting NURBS Objects
OpenGL treats NURBS as objects, similar to the way it treats quadrics: you create a NURBS object and
then specify how it should be rendered. The following table lists the OpenGL GLU functions for managing
NURBS objects.

OpenGL GLU Function Meaning
gluNewNurbsRenderer Create a new NURBS object.
gluDeleteNurbsRenderer Delete a NURBS object.
gluNurbsCallback Associate a callback with a

NURBS object, for error handling.

When porting IRIS GL NURBS code to OpenGL, keep the following points in mind:

· NURBS control points are floats, not doubles.
· The stride parameter is counted in floats, not bytes.
· If you're using lighting and you're not specifying normals, call glEnable with GL_AUTO_NORMAL as

the parameter to generate normals automatically.

Porting NURBS Curves
The OpenGL functions for drawing NURBS curves are very similar to the IRIS GL functions. You specify
knot sequences and control points using a gluNurbsCurve function, which must be contained within a
gluBeginCurve /gluEndCurve pair.

The following table lists the IRIS GL functions for drawing NURBS curves and their equivalent OpenGL
functions.

IRIS GL Function OpenGL Function Meaning
bgncurve gluBeginCurve Begin a curve definition.
nurbscurve gluNurbsCurve Specify curve attributes.
endcurve gluEndCurve End a curve definition.

Associate position, texture, and color coordinates by presenting each as a separate gluNurbsCurve
inside the begin/end pair. You can make no more than one call to gluNurbsCurve for each piece of color,
position, and texture data within a single gluBeginCurve/gluEndCurve pair. You must make exactly one
call to describe the position of the curve (a GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4 description).
When you call gluEndCurve, the curve is tessellated into line segments and then rendered.

The following table lists IRIS GL and OpenGL NURBS curve types.

IRIS GL Type OpenGL Type Meaning
N_V3D GL_MAP1_VERTEX_3 Polynomial curve.
N_V3DR GL_MAP1_VERTEX_4 Rational curve.
¾ GL_MAP1_TEXTURE_COOR

D_*
Control points are
texture coordinates.

¾ GL_MAP1_NORMAL Control points are
normals.

For more information on available evaluator types, see glMap1.

Porting Trimming Curves
OpenGL trimming curves are very similar to IRIS GL trimming curves. The following table lists the IRIS GL
functions for defining trimming curves and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
bgntrim gluBeginTrim Begin trimming-curve

definition.
pwlcurve gluPwlCurve Define a piecewise linear

curve.
nurbscurve gluNurbsCurve Specify trimming-curve

attributes.
endtrim gluEndTrim End trimming-curve

definition.

Porting NURBS Surfaces
The following table lists the IRIS GL functions for drawing NURBS surfaces and their equivalent OpenGL
functions.

IRIS GL
Function

OpenGL Function Meaning

bgnsurface gluBeginSurface Begin a surface definition.
nurbssurface gluNurbsSurface Specify surface attributes.
endsurface gluEndSurface End a surface definition.

The following table lists IRIS GL parameters for surface types and their equivalent OpenGL parameters.

IRIS GL Type OpenGL Type Meaning
N_V3D GL_MAP2_VERTEX_3 Polynomial curve.
N_V3DR GL_MAP2_VERTEX_4 Rational curve.
N_C4D GL_MAP2_COLOR_4 Control points define

color surface in
(R,G,B,A) form.

N_C4DR ¾ ¾

N_T2D GL_MAP2_TEXTURE
_COORD_2

Control points are
texture coordinates.

N_T2DR GL_MAP2_TEXTURE
_COORD_3

Control points are
texture coordinates.

¾ GL_MAP2_NORMAL Control points are
normals.

For more information on available evaluator types, see glMap2.

The following code sample draws a trimmed NURBS surface:

/*
 * trim.c
 * This program draws a NURBS surface in the shape of a
 * symmetrical hill, using both a NURBS curve and pwl
 * (piecewise linear) curve to trim part of the surface
 */
#include <GL/gl.h>
#include <GL/glu.h>
#include "aux.h"

GLfloat ctlpoints[4][4][3];

GLUnurbsObj *theNurb;

/*
 * Initializes the control points of the surface to
 * a small hill. The control points range from -3 to
 * +3 in x, y, and z
 */
void init_surface(void)
{
 int u, v;

 for (u = 0; u < 4; u++) {
 for (v = 0; v < 4; v++) {
 ctlpoints[u][v][0] = 2.0*((GLfloat)u - 1.5);
 ctlpoints[u][v][1] = 2.0*((GLfloat)v - 1.5);

 if ((u == 1 || u == 2) && (v == 1 || v == 2))
 ctlpoints[u][v][2] = 3.0;
 else
 ctlpoints[u][v][2] = -3.0;
 }
 }
}

/* Initialize material property and depth buffer
 */
void myinit(void)
{
 GLfloat mat_diffuse[] = { 0.6, 0.6, 0.6, 1.0 };
 GLfloat mat_specular[] = { 0.9, 0.9, 0.9, 1.0 };
 GLfloat mat_shininess[] = { 128.0 };

 glClearColor (0.0, 0.0, 0.0, 1.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);

 init_surface();

 theNurb = gluNewNurbsRenderer();
 gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 50.0);
 gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
}

void display(void)
{
 GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat edgePt[5][2] = /* counter clockwise */
 {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}};
 GLfloat curvePt[4][2] = /* clockwise */
 {{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};
 GLfloat curveKnots[8] =
 {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat pwlPt[4][2] = /* clockwise */
 {{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix();

 glRotatef(330.0, 1.,0.,0.);
 glScalef (0.5, 0.5, 0.5);

 gluBeginSurface(theNurb);
 gluNurbsSurface(theNurb,
 8, knots,
 8, knots,
 4 * 3,
 3,
 &ctlpoints[0][0][0],
 4, 4,
 GL_MAP2_VERTEX_3);
 gluBeginTrim (theNurb);
 gluPwlCurve (theNurb, 5, &edgePt[0][0], 2,
 GLU_MAP1_TRIM_2);
 gluEndTrim (theNurb);
 gluBeginTrim (theNurb);
 gluNurbsCurve (theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);
 gluPwlCurve (theNurb, 3, &pwlPt[0][0], 2,
 GLU_MAP1_TRIM_2);
 gluEndTrim (theNurb);
 gluEndSurface(theNurb);

 glPopMatrix();
 glFlush();
}

void myReshape(GLsizei w, GLsizei h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

/* Main Loop
 */
int main(int argc, char** argv)
{
 auxInitDisplayMode (AUX_SINGLE | AUX_RGBA | AUX_DEPTH);
 auxInitPosition (0, 0, 500, 500);
 auxInitWindow (argv[0]);
 myinit();
 auxReshapeFunc (myReshape);
 auxMainLoop(display);
}

Porting Antialiasing Functions
In OpenGL the subpixel mode is always on, consequently the IRIS GL function subpixel(TRUE) is not
necessary and has no OpenGL equivalent. The following topics describe aspects of porting IRIS GL
antialiasing code.

Porting Blending Code
In IRIS GL, when drawing to both front and back buffers, blending is done by reading one of the buffers,
blending with that color, and then writing the result to both buffers. In OpenGL, however, each buffer is
read in turn, blended, and then written.

The following table lists IRIS GL blending functions and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
¾ glEnable(GL_BLEN

D)
Turn on blending.

blendfunction glBlendFunc Specify a blend function.
   

The OpenGL glBlendFunc function and the IRIS GL blendfunction function are almost identical. The
following table lists IRIS GL blend factors and their OpenGL equivalents.

IRIS GL OpenGL Notes
BF_ZERO GL_ZERO
BF_ONE GL_ONE
BF_SA GL_SRC_ALPHA
BF_MSA GL_ONE_MINUS_SRC_ALPHA
BF_DA GL_DST_ALPHA
BF_MDA GL_ONE_MINUS_DST_ALPHA
BF_SC GL_SRC_COLOR
BF_MSC GL_ONE_MINUS_SRC_COLOR Destination

only.
BF_DC GL_DST_COLOR Source only.
BF_MDC GL_ONE_MINUS_DST_COLOR Source only.
BF_MIN_SA_MD
A

GL_SRC_ALPHA_SATURATE

Porting afunction Test Functions
The following table lists the available IRIS GL alpha test functions and their equivalent OpenGL functions.

afunction glAlphaFunc
AF_NOTEQUAL GL_NOTEQUAL
AF_ALWAYS GL_ALWAYS
AF_NEVER GL_NEVER
AF_LESS GL_LESS
AF_EQUAL GL_EQUAL
AF_LEQUAL GL_LEQUAL
AF_GREATER GL_GREATER
AF_GEQUAL GL_GEQUAL

Using Antialiasing Functions
The following table lists IRIS GL antialiasing functions and their equivalent OpenGL functions.

IRIS GL
Function

OpenGL Function Meaning

pntsmooth glEnable(GL_POINT_SMOOTH) Enable
antialiasing of
points.

linesmooth glEnable(GL_LINE_SMOOTH) Enable
antialiasing of
lines.

polysmooth glEnable(GL_POLYGON_SMOO
TH)

Enable
antialiasing of
polygons.

Use the equivalent glDisable calls to turn off antialiasing.

In IRIS GL, you can control the quality of the antialiasing by calling:

linesmooth(SML_ON + SML_SMOOTHER);

OpenGL provides similar control¾use glHint:

glHint(GL_POINT_SMOOTH_HINT, hintMode);
glHint(GL_LINE_SMOOTH_HINT, hintMode);
glHint(GL_POLYGON_SMOOTH_HINT, hintMode);

where hintMode is one of the following:

· GL_NICEST                                  (Use the highest quality smoothing.)
· GL_FASTEST                            (Use the most efficient smoothing.)
· GL_DONT_CARE

IRIS GL also permits end-correction by calling:

linesmooth(SML_ON + SML_END_CORRECT);

OpenGL has no equivalent for this function.

Porting Accumulation Buffer Calls
You must allocate your accumulation buffer by requesting the appropriate pixel format with the OpenGL
auxInitDisplayMode or ChoosePixelFormat function. The following table lists IRIS GL functions that
affect the accumulation buffer and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
acsize auxInitDisplayMode or

ChoosePixelFormat
Specify number of
bitplanes per color
component in the
accumulation buffer.

acbuf glAccum Operate on the
accumulation buffer.

¾ glClearAccum Set clear values for
accumulation buffer.

acbuf(AC_CLEAR) glClear(GL_ACCUM_BUFFER_BIT
)

Clear the
accumulation buffer.

The following table lists the IRIS GL acbuf parameters along with the equivalent OpenGL glAccum
parameters.

IRIS GL Parameter OpenGL Parameter
AC_ACCUMULATE GL_ACCUM
AC_CLEAR_ACCUMULATE GL_LOAD
AC_RETURN GL_RETURN
AC_MULT GL_MULT
AC_ADD GL_ADD

Porting Stencil Plane Calls
In OpenGL, you allocate stencil planes by requesting the appropriate pixel format with the OpenGL
auxInitDisplayMode or ChoosePixelFormat. functions. The following table lists IRIS GL functions that
affect the stencil planes and their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
stensize ChoosePixelFormat ¾

stencil(TRUE, ...) glEnable(GL_STENCIL_TEST) Enable stencil
tests.

stencil glStencilOp Set stencil test
actions.

stencil(...
func, ...)

glStencilFunc Set function and
reference value
for stencil testing.

swritemask glStencilMask Specify which
stencil bits can be
written.

¾ glClearStencil Specify the clear
value for the
stencil buffer.

sclear glClear(GL_STENCIL_BUFFER
_BIT)

¾

   

Stencil-comparison functions and stencil pass/fail operations are nearly equivalent in OpenGL and IRIS
GL. The IRIS GL stencil-function flags are prefaced with SF; the OpenGL flags with GL. IRIS GL pass/fail
operation flags are prefaced with ST; the OpenGL flags with GL.

Porting Display Lists
The OpenGL implementation of display lists is similar to the IRIS GL implementation, with two exceptions:
in OpenGL you can't edit display lists once you've created them and you can't call functions from within
display lists.

Because you can't edit or call functions from within display lists, these IRIS GL functions have no
equivalent in OpenGL:

· editobj
· objdelete, objinsert, and objreplace
· maketag, gentag, istag, and deltag
· callfunc

In IRIS GL, you use the makeobj and closeobj functions to create display lists. In OpenGL, you use
glNewList and glEndList.

The following table lists the IRIS GL display list functions with their equivalent OpenGL functions.

IRIS GL FunctionOpenGL Function Meaning
makeobj glNewList Create a new display list.
closeobj glEndList Signal end of display list.
callobj glCallList,

glCallLists
Execute display list or lists.

isobj glIsList Test for display list existence.
delobj glDeleteLists Delete contiguous group of

display lists.
genobj glGenLists Generate the given number

of contiguous empty display
lists.

Porting the bbox2 Function
There is no OpenGL equivalent for the IRIS GL bbox2 function.

To port code that contains bbox2 functions
1. Create a new (OpenGL) display list that contains everything in the equivalent IRIS GL display list

except the call to bbox2.
2. Use appropriate Win32 code to draw a rectangle the same size as the IRIS GL bbox.

Porting Edited Display Lists
Although you can't edit OpenGL display lists, you can get similar results by nesting display lists and then
destroying and creating new versions of the sublists. For example:

glNewList (1, GL_COMPILE);
 glIndexi(MY_RED);
glEndlist();

glNewList(2, GL_COMPILE);
 glScalef(1.2, 1.2, 1.0);
glEndList();

glNewList(3, GL_COMPILE);
 glCallList(1);
 glCallList(2);
glEndList();

glDeleteLists(1, 2);
glNewList(1, GL_COMPILE);
 glIndexi(MY_CYAN);
glEndList();
glNewList(2, GL_COPILE);
 glScalef(0.5, 0.5, 1.0);
glEndList;

A Sample Port of a Display List
This topic gives an IRIS GL sample of code that defines three display lists; one of the display lists refers
to the others in its definition. Following the IRIS GL sample is a sample of what the code looks like when
ported to OpenGL.

IRIS GL Sample Display List Code
makeobj(10); // 10 object
 cpack(0x0000FF);
 recti(164, 33, 364, 600); // Hollow rectangle
closeobj();

makeobj(20); // 20 object
 cpack(0xFFFF00);
 circle(0, 0, 25); // Unfilled circle
 recti(100, 100, 200, 200); // Filled rectangle
closeobj();

makeobj(30); // 30 object
 callobj(10);
 cpack(0xFFFFFF);
 recti(400, 100, 500, 300); // Draw filled rectangle
 callobj(20);
closeobj();

// Now draw by calling the lists
call(30);

OpenGL Sample Display List Code
Here is the preceding IRIS GL code translated to OpenGL:

glNewList(10, GL_COMPILE); // List #10
 glColor3f(1, 0, 0);
 glRecti(164, 33, 364, 600);
glEndList();

glNewList(20, GL_COMPILE); //List #20
 glColor3f(1, 1, 0); // Set color to YELLOW
 glPolygonMode(GL_BOTH, GL_LINE); // Unfilled mode
 glBegin(GL_POLYGON); // Use polygon to approximate a circle
 for(i=0; i<100; i++) {
 cosine = 25 * cos(i * 2 * PI/100.0);
 sine = 25 * sin(i * 2 * PI/100.0);
 glVertex2f(cosine, sine);
 }
 glEnd();
 glBegin(GL_QUADS);
 glColorf(0, 1, 1); // Set color to CYAN
 glVertex2i(100, 100);
 glVertex2i(100, 200);
 glVertex2i(200, 200);
 glVertex2i(100, 200);
 glEnd();
glEndList();

glNewList(30, GL_COMPILE); // List #30
 glCallList(10);
 glColorf(1, 1, 1); // Set color to WHITE
 glRecti(400, 100, 500, 300);
 glCallList(20);
glEndList();

// Execute the display lists
glCallList(30);

Porting Defs, Binds, and Sets
OpenGL doesn't have tables of stored definitions; you can't define lighting models, material, textures, line
styles, or patterns as separate objects as you can in IRIS GL. Thus OpenGL has no direct equivalents to
the following IRIS GL functions:

· Imdef and Imbind
· tevdef and tevbind
· textdef and textbind
· definestyle and setstyle
· defpattern and setpattern

You can use OpenGL display lists to mimic the IRIS GL def/bind mechanism. For example, here is a
material definition in IRIS GL:

float mat() = {
 AMBIENT, .1, .1, .1,
 DIFFUSE, 0, .369, .165,
 SPECULAR, .5, .5, .5,
 SHININESS, 10,
 LMNULL
};
lmdef(DEFMATERIAL, 1, 0, mat);
lmbind(MATERIAL, 1);

The following OpenGL code sample defines the same material in a display list that is referred to by the list
number defined by MYMATERIAL.

#define MYMATERIAL 10

GLfloat mat_amb[] = {.1, .1, .1, 1.0};
GLfloat mat_dif[] = {0, .369, .165, 1.0};
GLfloat mat_spec[] = {.5, .5, .5, 1.0};

glNewList(MYMATERIAL, GL_COMPILE);
 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_dif);
 glMaterialfv(GL_FRONT, GL_SHININESS, 10);
glEndList();

glCallList(MYMATERIAL);

Porting Lighting and Materials Functions
OpenGL functions for lighting and materials differ substantially from the IRIS GL functions. Unlike IRIS
GL, OpenGL has separate functions for setting lights, light models and materials.

Keep the following points in mind when porting lighting and materials functions:

· OpenGL has no table of stored definitions. You can use display lists to mimic the IRIS GL def/bind
mechanism. For more information on defs and binds, see Porting Defs, Binds, and Sets.

· With OpenGL, attenuation is associated with each light source, rather than the overall lighting model.
· Diffuse and specular components are separated in OpenGL light sources.
· OpenGL light sources have an alpha component. When porting your IRIS GL code, set this alpha

component to 1.0, indicating 100 percent opaque. The alpha values are then determined by the alpha
component of your materials only, so the objects in your scene will look the same as they did in IRIS
GL.

The following table lists IRIS GL lighting and materials functions and their equivalent OpenGL functions.

IRIS GL Function OpenGL Function Meaning
Imdef(DEFLIGHT, ...) glLight Define a light source.
Imdef(DEFLMODEL, ...) glLightModel Define a lighting model.
Imbind glEnable(GL_LIGHTi) Enable light i.
Imbind glEnable(GL_LIGHTING)Enable lighting.
Imdef(DEFMATERIAL, ...) glMaterial Define a material.
Imcolor glColorMaterial Change the effect of

color commands while
lighting is active.

¾ glGetMaterial Get material parameters.

The following table lists various IRIS GL material parameters and their equivalent OpenGL parameters.

Imdef Index glMaterial
Parameter

Default Meaning

ALPHA GL_DIFFUSE ¾ The fourth value
in the
GL_DIFFUSE
parameter
specifies the
alpha value.

AMBIENT GL_AMBIENT (0.2, 0.2, 0.2, 1.0) Ambient color.
DIFFUSE GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) Diffuse color.
SPECULAR GL_SPECULAR (0.0, 0.0, 0.0, 1.0) Emissive color.
SHININESS GL_SHININESS

GL_AMBIENT_
AND_DIFFUSE

0.0 Specular
exponent.
Equivalent to
calling glMaterial
twice with the
same values.

COLORINDEXES GL_COLOR_
INDEXES

¾ Color indexes for
ambient, diffuse,
and specular
lighting.

When the first parameter of Imdef is DEFMODEL, the equivalent OpenGL translation is the function
glLightModel. The exception is when the parameter following DEFMODEL is ATTENUATION: then the
equivalent OpenGL function is glLight.

The following table lists the equivalent lighting model parameters for IRIS GL and OpenGL.

Imdef Index glLightModel
Parameter

Default Meaning

AMBIENT GL_LIGHT_
MODEL_AMBIENT

(0.2, 0.2, 0.2,
1.0)

Ambient color of
scene.

ATTENUATION ¾ ¾ See glLight.
LOCALVIEWER GL_LIGHT_MODEL_

LOCAL_VIEWER
GL_FALSE Viewer local

(TRUE) or infinite
(FALSE).

TWOSIDE GL_LIGHTMODEL_
TWO_SIDE

GL_FALSE Use two-sided
lighting when
TRUE.

When the first parameter of Imdef is DEFLIGHT, the equivalent OpenGL translation is the glLight
function.

The following table lists the equivalent lighting parameters for IRIS GL and OpenGL.

Imdef Index glLight Parameter Default Meaning
AMBIENT GL_AMBIENT

GL_DIFFUSE
GL_SPECULAR

(0.0, 0.0, 0.0, 1.0)
(1.0, 1.0, 1.0, 1.0)
(1.0, 1.0, 1.0, 1.0)

Ambient intensity.
Diffuse intensity.
Specular
intensity.

LCOLOR No equivalent. ¾ ¾

POSITION GL_POSITION (0.0, 0.0, 1.0, 0.0) Position of light.
SPOTDIRECTION GL_SPOT_

DIRECTION
(0, 0, -1) Direction of

spotlight.
SPOTLIGHT GL_SPOT_

EXPONENT
GL_SPOT_CUTOFF

0

180

Intensity
distribution.
Maximum spread
angle of light
source.

DEFMODEL,
ATTENUATION

GL_CONSTANT_
ATTENUATION
GL_LINEAR_
ATTENUATION
GL_QUADRATIC_
ATTENUATION

(1, 0, 0) Attenuation
factors.

Porting Texture Functions
When porting IRIS GL texture functions to OpenGL, keep the following points in mind:

· OpenGL doesn't maintain tables of textures; it uses either 1-D texture and 2-D texture only. To reuse
the textures from your IRIS GL code, put them in a display list.

· OpenGL doesn't automatically generate mipmaps. If you're using mipmaps, you must first call the
gluBuild2DMipmaps function.

· In OpenGL, you use glEnable and glDisable to turn texturing capabilities on and off.
· In OpenGL, texture size is more strictly regulated than in IRIS GL. The size of an OpenGL texture

must be:

2n+2b

where n is an integer and b is:
· 0, if the texture has no border
· 1, if the texture has a border pixel (OpenGL textures can have 1-pixel borders.)

The following table lists IRIS GL texture functions and their general OpenGL equivalents.

IRIS GL Function OpenGL Function Meaning
textdef2d glTexImage2D

glTexParameter
gluBuild2DMipmaps

Specify a 2-D texture
image.

textbind glTexImage2D
glTexParameter
gluBuild2DMipmaps

Select a texture
function.

tevdef glTexEnv Define a texture-
mapping environment.

tevbind glTexEnv
glTexImage1D

Select a texture
environment.

t2 glTexCoord Set the current texture
coordinates.

texgen glTexGen
glGetTexParameter
gluBuild1DMipmaps
gluBuild2DMipmaps
gluScaleImage

Control generation of
texture coordinates.

Scale an image to an
arbitrary size.

For more information on texturing, see the OpenGL Programming Guide.

Translating tevdef
The following code example is an IRIS GL texture-environment definition that specifies the TV_DECAL
texture-environment parameter:

float tevprops[] = {TV_DECAL, TV_NULL};

tevdef(1, 0, tevprops);

and the same code translated to OpenGL:

glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

The following table lists the IRIS GL texture-environment parameters and their equivalent OpenGL
parameters.

IRIS GL Parameter OpenGL Parameter
TV_MODULATE GL_MODULATE
TV_DECAL GL_DECAL
TV_BLEND GL_BLEND
TV_COLOR GL_TEXTURE_ENV_COLOR
TV_ALPHA No direct OpenGL equivalent.
TV_COMPONENT_SELECT No direct OpenGL equivalent.

For more information about texture-environment parameters, see glTexEnv.

Translating texdef
The following code example is an IRIS GL texture definition:

float texprops[] = { TX_MINFILTER, TX_POINT,
 TX_MAGFILTER, TX_POINT,
 TX_WRAP_S, TX_REPEAT,
 TX_WRAP_T, TX_REPEAT,
 TX_NULL };

textdef2d(1, 1, 6, 6, granite_texture, 7, texprops);

In the preceding example, texdef specifies the TX_POINT filter as both the magnification and the
minimizing filter, and TX_REPEAT as the wrapping mechanism. It also specifies the texture image:
granite_texture.

In OpenGL, glTexImage specifies the image and glTexParameter sets the property. To translate IRIS GL
texture definitions, replace the textdef function with glTexImage and one or more calls to
glTexParameter.

The preceding IRIS GL code looks like this when translated to OpenGL:

GLfloat nearest[] = {GL_NEAREST};
GLfloat repeat = {GL_REPEAT};
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, nearest);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_MAGILTER, nearest);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, repeat);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, nearest);
glTexImage1D(GL_TEXTURE_1D, 0, 1, 6, 0, GL_RGB,
 GL_UNSIGNED_SHORT, granite_texture);

The following table lists the IRIS GL texture parameters and their equivalent OpenGL parameters.

IRIS GL Texture Parameter OpenGL Texture Parameter
TX_MINFILTER GL_TEXTURE_MIN_FILTER
TX_MAGFILTER GL_TEXTURE_MAG_FILTER
TX_WRAP, TX_WRAP_S GL_TEXTURE_WRAP_S
TX_WRAP, TX_WRAP_T GL_TEXTURE_WRAP_T

GL_TEXTURE_BORDER_COLOR

The following table lists the possible values of the IRIS GL texture parameters and their equivalent
OpenGL parameters.

IRIS GL Texture Parameter OpenGL Texture Parameter
TX_POINT GL_NEAREST
TX_BILINEAR GL_LINEAR
TX_MIPMAP_POINT GL_NEAREST_MIPMAP_NEARE

ST
TX_MIPMAP_BILINEAR GL_LINEAR_MIPMAP_NEAREST
TX_MIPMAP_LINEAR GL_NEAREST_MIPMAP_LINEAR
TX_TRILINEAR GL_LINEAR_MIPMAP_LINEAR

Translating texgen
The IRIS GL function texgen is translated to glTexGen for OpenGL.

With IRIS GL, you call texgen twice: once to set the mode and plane equation simultaneously, and once
to enable texture-coordinate generation. For example:

texgen(TX_S, TG_LINEAR, planeParams);
texgen(TX_S, TG_ON, NULL);

With OpenGL, you make three calls: two to glTexGen (once to set the mode and once to set the plane
equation), and one to glEnable. For example, the OpenGL equivalent to the IRIS GL code above is:

glTexGen(GL_S, GLTEXTURE_GEN_MODE, modeName);
glTextGen(GL_S, GL_OBJECT_PLANE, planeParameters);
glEnable(GL_TEXTURE_GEN_S);

The following table lists the IRIS GL texture-coordinate names and their OpenGL equivalents.

IRIS GL Texture
Coordinate

OpenGL Texture
Coordinate

glEnable Argument

TX_S GL_S GL_TEXTURE_GEN_
S

TX_T GL_T GL_TEXTURE_GEN_T
TX_R GL_R GL_TEXTURE_GEN_

R
TX_Q GL_Q GL_TEXTURE_GEN_

Q
   

The following table lists the IRIS GL texture-generation modes and their equivalent OpenGL texture
modes and plane names.

IRIS GL Texture
Mode

OpenGL Texture
Mode

OpenGL Plane Name

TG_LINEAR GL_OBJECT_LINEAR GL_OBJECT_PLANE
TG_CONTOUR GL_EYE_LINEAR GL_EYE_PLANE
TG_SPHEREMAP GL_SPHERE_MAP

Porting Picking Functions
All IRIS GL picking functions have OpenGL equivalents, with the exception of clearhitcode. The following
table lists the IRIS GL picking functions and their equivalent OpenGL functions.

IRIS GL
Function

OpenGL Function Meaning

clearhitcode Not supported. Clears global variable
and hitcode.

pick
select

glRenderMode(GL_SELECT
)

Switch to selection or
picking mode.

endpick
endselect

glRenderMode(GL_RENDE
R)

Switch to rendering
mode.

picksize gluPickMatrix
glSelectBuffer

Set the return array.

initnames glInitNames
pushname
popname

glPushName
glPopName

loadname glLoadName
   

For more information on picking, see gluPickMatrix.

Porting Feedback Functions
With IRIS GL, the way that feedback is handled differs depending on the computer running IRIS GL.
OpenGL standardizes feedback functions so you can rely on consistent feedback among various
hardware platforms. The following table lists the IRIS GL feedback functions and their equivalent OpenGL
functions.

IRIS GL
Function

OpenGL Function Meaning

feedback glRenderMode(GL_FEEDBA
CK)

Switch to feedback
mode.

endfeedback glRenderMode(GL_RENDER
)
glFeedbackBuffer

Switch to rendering
mode.

passthrough glPassThrough Place a token marker
in the feedback buffer.

OpenGL Functions and Their IRIS
GL Equivalents

This appendix lists IRIS GL functions and their equivalent OpenGL functions. The first column is an
alphabetic list of IRIS GL functions, the second column contains the corresponding functions to use in
OpenGL.

Note    The following OpenGL functions listed may behave somewhat differently from the IRIS GL
commands, and the parameters may be different as well. For more information on the differences
between IRIS GL and OpenGL, see IRIS GL and OpenGL Differences.

IRIS GL Function OpenGL,GLU, or Win32 Function
acbuf glAccum
acsize ChoosePixelFormat
addtopup Use Win32 for menus.
afunction glAlphaFunc
arc gluPartialDisk
backbuffer glDrawBuffer(GL_BACK)
backface glCullFace(GL_BACK)
bbox2 Not supported.
bgnclosedline glBegin(GL_LINE_LOOP)
bgncurve gluBeginCurve
bgnline glBegin(GL_LINE_STRIP)
bgnpoint glBegin(GL_POINTS)
bgnpolygon glBegin(GL_POLYGON)
bgnqstrip glBegin(GL_QUAD_STRIP)
bgnsurface gluBeginSurface
bgntmesh glBegin(GL_TRIANGLE_STRIP)
bgntrim gluBeginTrim
blankscreen Use Win32 for windowing.
blanktime Use Win32 for windowing.
blendfunction glBlendFunc
blink Use Win32 for color maps.
blkqread Use Win32 for event handling.
c glColor
callfunc Not supported.
callobj glCallList
charstr glCallLists
chunksize Not needed.
circ gluDisk
clear glClear(GL_COLOR_BUFFER_BIT)
clearhitcode Not supported.
clipplane glClipPlane
clkon Use Win32 for keyboard management.

clkoff Use Win32 for keyboard management.
closeobj glEndList
cmode ChoosePixelFormat
cmov
cmov2

glRasterPos3
glRasterPos2

color glIndex
compactify Not needed.
concave gluBeginPolygon
cpack glColor
crv Not supported.
crvn Not supported.
curorigin Use Win32 for cursors.
cursoff Use Win32 for cursors.
curson Use Win32 for cursors.
curstype Use Win32 for cursors.
curvebasis glMap1
curveit glEvalMesh1
curveprecision Not supported.
cyclemap Use Win32 for color maps.
czclear glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)
dbtext Not supported.
defbasis glMap1
defcursor Use Win32 for cursors.
deflinestyle glLineStipple
defpattern glPolygonStipple
defpup Use Win32 for menus.
defrasterfont wglUseFontBitmaps
delobj glDeleteLists
deltag Not supported.
depthcue glFog
dglclose Not needed. (OpenGL is network

transparent.)
dglopen Not needed. (OpenGL is network

transparent.)
dither glEnable(GL_DITHER)
dopup Use Win32 for menus.
doublebuffer ChoosePixelFormat
draw glBegin(GL_LINES)
drawmode wglMakeCurrent
editobj Not supported.
endclosedline glEnd
endcurve gluEndCurve
endfeedback glRenderMode(GL_RENDER)
endfullscreen Not supported.
endline glEnd

endpick glRenderMode(GL_RENDER)
endpoint glEnd
endpolygon glEnd
endpupmode Use Win32 for menus.
endqstrip glEnd
endselect glRenderMode(GL_RENDER)
endsurface gluEndSurface
endtmesh glEnd
endtrim gluEndTrim
feedback glFeedbackBuffer
finish glFinish
fogvertex glFog
font glListBase
foreground Use Win32 for windowing.
freepup Use Win32 for menus.
frontbuffer glDrawBuffer(GL_FRONT)
frontface glCullFace
fudge Use Win32 for windowing.
fullscrn Not supported.
gammaramp Use Win32 for color maps.
gbegin Use Win32 for windowing.
gconfig No equivalent. (Not needed.)
genobj glGenLists
gentag Not supported.
getbackface glGet
getbuffer glGet
getbutton Use Win32 for windowing.
getcmmode wglGetCurrentContext
getcolor glGet
getcpos glGet
getcursor Not supported.
getdcm glIsEnabled
getdepth glGet
getdescender Use Win32 for fonts.
getdev Not supported.
getdisplaymode glGet

wglGetCurrentContext
getdrawmode wglGetCurrentContext
getfont Use Win32 for fonts.
getgdesc glGet

DescribePixelFormat
wglGetCurrentContext
wglGetCurrentDC

getgpos Not supported.
getheight Use Win32 for fonts.
gethitcode Not supported.

getlsbackup Not supported.
getlsrepeat glGet
getlstyle glGet
getlwidth glGet
getmap(void) Not supported.
getmatrix glGet(GL_MODELVIEW_MATRIX)

glGet(GL_PROJECTION_MATRIX)
getmcolor Not supported.
getmmode glGet(GL_MATRIX_MODE)
getmonitor Not supported.
getnurbsproperty gluGetNurbsProperty
getopenobj Not supported.
getorigin Use Win32 for windowing.
getpattern glGetPolygonStipple
getplanes glGet(GL_RED_BITS)

glGet(GL_GREEN_BITS)
glGet(GL_BLUE_BITS)

getport Use Win32 for windowing.
getresetls Not supported.
getscrbox Not supported.
getscrmask glGet(GL_SCISSOR_BOX)
getshade glGet(GL_CURRENT_INDEX)
getsize Use Win32 for windowing.
getsm glGet(GL_SHADE_MODEL)
getvaluator Use Win32 for event handling
getvideo Not supported.
getviewport glGet(GL_VIEWPORT)
getwritemask glGet(GL_INDEX_WRITEMASK)
getwscrn Use Win32 for windowing.
getzbuffer glIsEnabled(GL_DEPTH_TEST)
gexit Use Win32 for windowing.
gflush glFlush
ginit Use Win32 for windowing.
glcompat Not supported.
greset Not supported.
gRGBcolor glGet(GL_CURRENT_RASTER_COLO

R)
gRGBcursor Use Win32 for cursors.
gRGBmask glGet(GL_COLOR_WRITEMASK)
gselect glSelectBuffer
gsync Use Win32 for windowing.
gversion glGetString(GL_RENDERER)
iconsize Use Win32.
icontitle Use Win32.
imakebackground Use Win32 for event handling.
initnames glInitNames

ismex Not supported.
isobj glIsList
isqueued Use Win32 for event handling.
istag Not supported.
keepaspect Use Win32 for windowing.
lampoff Not supported.
lampon Not supported.
linesmooth glEnable(GL_LINE_SMOOTH)
linewidth glLineWidth
linewidthf glLineWidth
lmbind glEnable(GL_LIGHTING)

glEnable(GL_LIGHT)
lmcolor glColorMaterial
lmdef glMaterial

glLight
glLightModel

loadmatrix glLoadMatrix
loadname glLoadName
logicop glLogicOp
lookat gluLookAt
lrectread glReadPixels
lrectwrite(]) glDrawPixels
lRGBrange Not supported. (See glFog.)
lsbackup Not supported.
lsetdepth glDepthRange
lshaderange Not supported. (See glFog.)
lsrepeat glLineStipple
makeobj glNewList
maketag Not supported.
mapcolor Use Win32 for color maps.
mapw gluProject
maxsize Use Win32 for windowing.
minsize Use Win32 for windowing.
mmode glMatrixMode
move Not supported.
mswapbuffers Use Win32 for windowing.
multimap Use Win32 for color maps.
multmatrix glMultMatrix
n3f glNormal3fv
newpup Use Win32 for Menus.
newtag Not supported.
nmode glEnable(GL_NORMALIZE)
noborder Use Win32 for windowing.
noise Use Win32 for event handling.
noport Use Win32 for windowing.
normal glNormal3fv

nurbscurve gluNurbsCurve
nurbssurface gluNurbsSurface
objdelete Not supported.
objinsert Not supported.
objreplace Not supported.
onemap Use Win32 for color maps.
ortho glOrtho
ortho2 gluOrtho2D
overlay Use Win32.
pagecolor Not supported.
passthrough glPassThrough
patch glEvalMesh2
patchbasis glMap2
patchcurves glMap2
patchprecision Not supported.
pclos Not supported. (See glEnd.)
pdr Not supported. (See glVertex.)
perspective gluPerspective
pick gluPickMatrix

glRenderMode(GL_SELECT)
picksize gluPickMatrix
pixmode glPixelTransfer and 3
pmv Not supported. (See glBegin and

glVertex.)
pnt glBegin(GL_POINTS)
pntsize glPointSize
pntsizef glPointSize
pntsmooth glEnable(GL_POINT_SMOOTH)
polarview Not supported. (See glRotate and

glTranslate.)
polf Not supported.
poly Not supported.
polymode glPolygonMode
polysmooth glEnable(GL_POLYGON_SMOOTH)
popattributes glPopAttrib
popmatrix glPopMatrix
popname glPopName
popviewport glPopAttrib
prefposition Use Win32 for windowing.
prefsize Use Win32 for windowing.
pupmode Use Win32 for windowing.
pushattributes glPushAttrib
pushmatrix glPushMatrix
pushname glPushName
pushviewport glPushAttrib(GL_VIEWPORT)
pwlcurve gluPWLCurve

qcontrol Use Win32 for event handling.
qdevice Use Win32 for event handling.
qenter Use Win32 for event handling.
qgetfd Use Win32 for event handling.
qread Use Win32 for event handling.
qreset Use Win32 for event handling.
qtest Use Win32 for event handling.
rcrv Not supported.
rcrvn Not supported.
rdr Not supported.
readdisplay Not supported.
readRGB Not supported.
readsource glReadBuffer
rect glRect

glPolygonMode
rectf glRect
rectcopy glCopyPixels
rectread glReadPixels
rectwrite glDrawPixels
rectzoom glPixelZoom
resetls Not supported.
reshapeviewport Not supported.
RGBcolor glColor
RGBcursor Use Win32 for cursors.
RGBmode Use Win32 for windowing.
RGBrange Not supported.
RGBwritemask glColorMask
ringbell Not supported.
rmv Not supported.
rot glRotate
rotate glRotate
rpatch Not supported.
rpdr Not supported.
rpmv Not supported.
sbox glRect
scale glScale
sclear glClear(GL_STENCIL_BUFFER_BIT)
scrbox Not supported.
screenspace Not supported.
scrmask glScissor
scrnattach Use Win32 for windowing.
scrnselect Use Win32 for windowing.
scrsubdivide Not supported.
select glRenderMode
setbell Not supported.

setcursor Use Win32 for cursors.
setdblights Not supported.
setdepth glDepthRange
setlinestyle glLineStipple
setmap Use Win32 for color maps.
setmonitor Not supported.
setnurbsproperty gluNurbsProperty
setpattern glPolygonStipple
setpup Use Win32 for menus.
setvaluator Use Win32 for devices.
setvideo Not supported.
shademodel glShadeModel
shaderange glFog
singlebuffer Use Win32 for windowing.
smoothline glEnable(GL_LINE_SMOOTH)
spclos Not supported.
splf Not supported. (See glBegin.)
stencil glStencilFunc

glStencilOp
stensize glStencilMask
stepunit Use Win32 for windowing.
strwidth Use Win32 for fonts and strings.
subpixel Not needed.
swapbuffers SwapBuffers
swapinterval Use Win32 for windowing.
swaptmesh Not supported.

(See glBegin(GL_TRIANGLE_FAN).)
swinopen Use Win32 for windowing.
swritemask glStencilMask
t2 glTexCoord2
tevbind glTexEnv
tevdef glTexEnv
texbind glTexImage2D

glTexParameter
gluBuild2DMipmaps

texdef2d glTexImage2D
glTexParameter
gluBuild2DMipmaps

texgen glTexGen
textcolor Not supported.
textinit Not supported.
textport Not supported.
tie Use Win32 for event handling.
tpoff Not supported.
tpon Not supported.
translate glTranslate

underlay ChoosePixelFormat
unqdevice Use Win32 for event handling.
v glVertex
videocmd Not supported.
viewport glViewport
winattach Use Win32 for windowing.
winclose wglDeleteContext

CloseWindow
winconstraints Use Win32 for windowing.
windepth Use Win32 for windowing.
window glFrustum
winget wglGetCurrentContext
winmove Use Win32 for windowing.
winopen Use Win32 for windowing.
winpop Use Win32 for windowing.
winposition Use Win32 for windowing.
winpush Use Win32 for windowing.
winset Use Win32 for windowing.
wintitle Use Win32 for windowing.
wmpack glColorMask
writemask glIndexMask
writepixels glDrawPixels
writeRGB glDrawPixels
xfpt Not supported.
zbuffer glEnable(GL_DEPTH_TEST)
zclear glClear(GL_DEPTH_BUFFER_BIT)
zdraw Not supported.
zfunction glDepthFunc
zsource Not supported.
zwritemask glDepthMask

IRIS GL and OpenGL Differences
This appendix lists the differences between OpenGL and IRIS GL. A term for each difference is given,
followed by a description.

accumulation wrapping
The OpenGL accumulation buffer operation is not defined when component values exceed 1.0 or
drop below    -1.0.

antialiased lines
OpenGL stipples antialiased lines. IRIS GL does not.

arc
OpenGL supports arcs in its utility library.

attribute lists
The attributes pushed by IRIS GL pushattributes differ from any of the attribute sets pushed by
OpenGL glPushAttrib. Because all OpenGL states can be read back, however, you can implement
any desired push/pop semantics using OpenGL.

automatic texture scaling
The OpenGL texture interface does not support automatic scaling of images to power-of-two
dimensions. However, the GLU supports image scaling.

bbox
OpenGL doesn't support conditional execution of display lists.

callfunc
OpenGL doesn't support callback from display lists. Note that IRIS GL doesn't support this
functionality either, when client and server are on different platforms.

circle
OpenGL supports circles with the GLU. In OpenGL both circles and arcs (disks and partial disks) can
have holes. Also, you can change subdivision of the primitives in OpenGL, and the primitives' surface
normals are available for lighting.

clear options
OpenGL actually clears buffers. It doesn't apply currently specified pixel operations, such as blending
and logicop, regardless of their modes. To clear using such features, you must render a window-size
polygon.

closed lines
OpenGL renders all single-width aliased lines such that abutting lines share no pixels. This means
that the "last" pixel of an independent line is not drawn.

color/normal flag
OpenGL lighting is explicitly enabled or disabled. When enabled, it is effective regardless of the order
in which colors and normals are specified.
You cannot enable or disable lighting between OpenGL glBegin and glEnd commands. To disable
lighting between glBegin and glEnd, specify zero ambient, diffuse, and specular material reflectance,
and then set the material emission to the desired color.

concave polygons
The core OpenGL API doesn't handle concave polygons, but the GLU supports decomposing
concave, non-self-intersecting contours into triangles. These triangles can either be drawn
immediately or returned.

current computed color
OpenGL has no equivalent to a current computed color. If you're using OpenGL as a lighting engine,
you can use feedback to obtain colors generated by lighting calculations.

current graphics position
OpenGL doesn't maintain a current graphics position. IRIS GL commands that depend on current
graphics position, such as relative lines and polygons, are not included in OpenGL.

curves
OpenGL does not support IRIS GL curves. Use of NURBS curves is recommended.

defs/binds
OpenGL doesn't have the concept of material, light, or texture objects; only of material, light, and
texture properties. You can use display lists to create their own objects, however.

depthcue
OpenGL provides no direct support for depth cueing, but its fog support is a more general capability
that you can easily use to emulate the IRIS GL depthcue function.

display list editing
OpenGL display lists can't be edited, only created and destroyed. Because you specify display list
names, however, you can redefine individual display lists in a hierarchy.
OpenGL display lists are designed for data caching, not for database management. They are
guaranteed to be stored on the server in client/server environments, so they are not limited by
network bandwidth during execution.
OpenGL display lists can be called between glBegin and glEnd commands, so the display list
hierarchy can be made fine enough that it can, in effect, be edited.

error checking
OpenGL checks for errors more carefully than IRIS GL. For example, all OpenGL functions that are
not accepted between glBegin and glEnd are detected as errors, and have no other effect.

error return values
When an OpenGL command that returns a value detects an error, it always returns zero. OpenGL
commands that return data through passed pointers make no change to the array contents if an error
is detected.

error side effects
When an OpenGL command results in an error, its only side effect is to update the error flag to the
appropriate value. No other state changes are made. (An exception is the OUT_OF_MEMORY error,
which is fatal.)

feedback
Feedback is standardized in OpenGL so it doesn't change from machine to machine.

fonts and strings
OpenGL requires character glyphs to be manipulated as individual display lists. It provides a display
list calling function that accepts a list of display list names, each name represented as 1, 2, or 4 bytes.
The glCallLists function adds a separately specified offset to each display list name before the call,
allowing lists of display list names to be treated as strings.
This mechanism provides all the functionality of IRIS GL fonts, and considerably more. For example,
characters comprised of triangles can be easily manipulated.

frontbuffer
IRIS GL has complex rules for rendering to the front buffer in single buffer mode. OpenGL handles
rendering to the front buffer in a straightforward way.

hollow polygons
You can use the OpenGL stencil capacity to render hollow polygons. OpenGL doesn't support other
means for creating hollow polygons.

index clamping
Where possible, OpenGL treats color and stencil indexes as bit fields rather than numbers. Thus
indexes are masked, rather than clamped, to the supported range of the framebuffer.

integer colors
Signed integer color components (red, green, blue, or alpha) are mapped linearly to floating points
such that the most negative integer maps to -1.0 and the most positive integer maps to 1.0. This
mapping occurs when you specify the color, before OpenGL replaces the current color.
Unsigned integer color components are mapped linearly to floating points such that 0 maps to 0.0 and
the largest integer maps to 1.0. This mapping occurs when you specify the color, before OpenGL
replaces the current color.

integer normals
Integer normal components are mapped just like signed color components. The most negative integer
maps to -1.0, and the most positive integer maps to 1.0. pixel fragments.
Pixels drawn by glDrawPixels or glCopyPixels are always rasterized and converted to fragments.
The resulting fragments are textured, fogged, depth buffered, blended, and so on, just as if they were
generated from geometric points. Fragment data that isn't provided by the source pixels is augmented
from the current raster position. For example, RGBA pixels take the raster position Z and texture
coordinates. Depth pixels take the raster position color and texture coordinates.

invariance
OpenGL guarantees certain consistency that IRIS GL doesn't. For example, OpenGL guarantees that
identical code sequences sent to the same system, differing only in the specified blending function,
will generate the same pixel fragments. (The fragments differ, however, if blending is enabled and
then disabled.)

lighting equation
The OpenGL lighting equation differs slightly from the IRIS GL equation. OpenGL supports separate
attenuation for each light source, rather than a single attenuation for all the light sources like IRIS GL.
OpenGL adjusts the equation so that ambient, diffuse, and specular lighting contributions are all
attenuated. Also, OpenGL allows you to specify separate colors for the ambient, diffuse, and specular
intensities of light sources, as well as for the ambient, diffuse, and specular reflectance of materials.
All OpenGL light and material colors include alpha.
Setting the specular exponent to zero does not defeat specular lighting in OpenGL.

mapw
OpenGL utilities support mapping between object and window coordinates.

matrix mode
Where the IRIS GL ortho, ortho2, perspective, and window functions operate on a particular matrix,
all OpenGL matrix operations work on the current matrix. All OpenGL matrix operations except
glLoadIdentity and glLoadMatrix multiply the current matrix rather than replacing it (as do ortho,
ortho2, perspective, and window in the IRIS GL).

mipmaps, automatic generation
The OpenGL texture interface does not support automatic generation of mipmap images. However,
the GLU supports the automatic generation of mipmap images for both 1-D and 2-D textures.

move/draw/pmove/pdraw/pclos
OpenGL supports only Begin/End style graphics, because it does not maintain a current graphics
position. The scalar parameter specification of the old move/draw commands is accepted by OpenGL
for all vertex related commands, however.

mprojection mode
IRIS GL doesn't transform geometry by the modelview matrix while in projection matrix mode.
OpenGL always transforms by both the modelview and the projection matrix, regardless of matrix
mode.

multi-buffer drawing
OpenGL renders to each color buffer individually, rather than computing a single new color value
based on the contents of one color buffer and writing it to all the enabled color buffers, as IRIS GL
does.

NURBS
OpenGL supports NURBS with a combination of core capability (evaluators) and GLU support. All
IRIS GL NURBS capabilities are supported.

old polygon mode
Aliased OpenGL polygons are always point-sampled. IRIS GL's polygon compatibility mode, where
pixels outside the polygon perimeter are included in its rasterization, is not supported. If your code
uses this polygon mode, it's probably for rectangles. Old polygon mode rectangles appear one pixel
wider and higher.

packed color formats
OpenGL accepts colors as 8-bit components, but these components are treated as an array of bytes

rather than as bytes packed into larger words. By encouraging array indexing rather than shifting,
OpenGL promotes endian-invariant programming.
Just as IRIS GL accepts packed colors both for geometric and pixel rendering, OpenGL accepts
arrays of color components for geometric and pixel rendering.

patches
OpenGL doesn't support IRIS GL patches.

per-bit color writemask
OpenGL writemasks for color components enable or disable changes to the entire component (red,
green, blue, or alpha), not to individual bits of components. Note that per-bit writemasks are
supported for both color indexes and stencil indexes, however.

per-bit depth writemask
OpenGL writemasks for depth components enable or disable changes to the entire component, not to
individual bits of the depth component.

pick
The OpenGL Utility library includes support for generating a pick matrix.

pixel coordinates
In both OpenGL and IRIS GL, the origin of a window's coordinate system is at its lower left corner.
OpenGL places the origin at the lower left corner of this pixel, however, while IRIS GL places it at the
center of the lower left pixel.

pixel zoom
OpenGL negative zoom factors reflect about the current graphics position. IRIS GL doesn't define the
operation of negative zoom factors, and instead provides RIGHT_TO_LEFT and TOP_TO_BOTTOM
reflection pixmodes. These reflection modes reflect in place, rather than about the current raster
position. OpenGL doesn't define reflection modes.

pixmode
OpenGL pixel transfers operate on individual color components, rather than on packed groups of four
8-bit components as does IRIS GL. While OpenGL provides substantially more pixel capability than
IRIS GL, it doesn't support packed color constructs, and it doesn't enable color components to be
reassigned (red to green, red to blue, and so on) during pixel copy operations.

polf/poly
OpenGL provides no direct support for vertex lists other than display lists. Functions like polf and
poly can be implemented easily using the OpenGL API, however.

polygon provoking vertex
Flat shaded IRIS GL polygons take the color of the last vertex specified, while OpenGL polygons take
the color of the first vertex specified.

polygon stipple
With IRIS GL the polygon stipple pattern is relative to the screen. With OpenGL it is relative to a
window.

polygon vertex count
There is no limit to the number of vertices between glBegin and glEnd with OpenGL, even for
glBegin(POLYGON). With IRIS GL, polygons are limited to no more than 255 vertices.

readdisplay
Reading pixels outside window boundaries is properly a window system capability, rather than a
rendering capability. Use Win32 functions to replace the IRIS GL readdisplay command.

relative move/draw/pmove/pdraw/pclos
OpenGL doesn't maintain a current graphics position, and therefore doesn't support relative vertex
operations.

RGBA logicop()
OpenGL does not support logical operations on RGBA buffers.

sbox()
sbox is an IRIS GL rectangle primitive that is well-defined only if transformed without rotation. It is
designed to be rendered faster than standard rectangles. While OpenGL doesn't support such a

primitive, it can be tuned to render rectangles very quickly when the matrices and other modes are in
states that simplify calculations.

scalar arguments
All OpenGL commands that are accepted between glBegin and glEnd have entry points that accept
scalar arguments. For example, glColor4f(red, green, blue, alpha).

scissor
The OpenGL glScissor function doesn't track the viewport. The IRIS GL viewport command
automatically updates the scrmask.

scrbox()
OpenGL doesn't support bounding box computation.

scrsubdivide()
OpenGL doesn't support screen subdivision.

single matrix mode
OpenGL always maintains two matrices: ModelView and Projection. While an OpenGL
implementation can consolidate these into a single matrix for performance reasons, it must always
present the two-matrix model to the programmer.

subpixel mode
All OpenGL rendering is subpixel positioned¾subpixel mode is always on.

swaptmesh()
OpenGL doesn't support the swaptmesh capability. It does offer two types of triangle meshes,
however: one that corresponds to the default "strip" behavior of the IRIS GL, and another that
corresponds to calling swaptmesh prior to the third and all subsequent vertices when using IRIS GL.

vector arguments
All OpenGL commands that are accepted between glBegin and glEnd have entry points that accept
vector arguments. For example, glColor4fv.

window management
OpenGL includes no window system commands. It is always supported as an extension to a window
or operating system that includes capability for device and window control. Each extension provides a
system-specific mechanism for creating, destroying, and manipulating OpenGL rendering contexts.
For example, the OpenGL extension to the X window system (GLX) includes roughly 10 commands
for this purpose.
IRIS GL commands such as gconfig and drawmode are not implemented by OpenGL.

window offset
IRIS GL returns viewport and character positions in screen, rather than window, coordinates. OpenGL
always uses window coordinates.

z rendering
OpenGL doesn't support rendering colors to the depth buffer. It does allow for additional color buffers,
which can be implemented using the same memory that is used for depth buffers in other window
configurations. But these additional color buffers cannot share memory with the depth buffer in any
single configuration.

A
aliasing

A rendering technique that assigns to pixels the color of the primitive being rendered, regardless of
whether that primitive covers all of the pixel's area or only a portion of the pixel's area. This results in
jagged edges, or jaggies.

alpha
A fourth color component typically used to control color blending. The alpha component is never
displayed directly. By convention, OpenGL alpha corresponds to opacity rather than transparency,
meaning an alpha value of 1.0 implies complete opacity, and an alpha value of 0.0 implies complete
transparency.

animation
The generation of repeated renderings of a scene quickly enough, with smoothly changing viewpoint
or object positions, so that the illusion of motion is achieved. OpenGL animation almost always uses
double-buffering.

antialiasing
A rendering technique that assigns colors to pixels based on the fraction of the pixel area that is
covered by the primitive being rendered. Antialiased rendering reduces or eliminates the jaggies that
result from aliased rendering. See also jaggies, rendering.

application-specific clipping
Clipping of primitives against planes in eye coordinates. The planes are specified by the application
using glClipPlane. See also eye coordinates.

B
back face

See face.

bit
Binary digit. A state variable that has only two possible values: 0 or 1. Binary numbers are
constructions of one or more bits.

bitmap
A rectangular array of bits. Also, the primitive rendered by the glBitmap command, which uses its
bitmap parameter as a mask.

bitplane
A rectangular array of bits mapped one-to-one with pixels.

blending
Reducing two color components to one component, usually as a linear interpolation between the two
components.

buffer
A group of bitplanes that store a single component (such as depth or green) or a single index (such
as the color index or the stencil index). Sometimes the red, green, blue, and alpha buffers together
are referred to as the color buffer, rather than the color buffers.

C
client

The computer from which OpenGL commands are issued. The computer that issues OpenGL
commands can be connected through a network to a different computer that executes the
commands, or commands can be issued and executed on the same computer. See also server.

client memory
The main memory (where program variables are stored) of the client computer.

clip coordinates
The coordinate system that follows transformation by the projection matrix and that precedes
perspective division. View-volume clipping is done in clip coordinates, but application-specific
clipping is not. See also application-specific clipping.

clipping
Eliminating the portion of a geometric primitive that is outside the half-space defined by a clipping
plane. Points are simply rejected if outside. The portion of a line or of a polygon that is outside the
half-space is eliminated, and additional vertices are generated as necessary to complete the
primitive within the clipping half-space. Geometric primitives and the current raster position (when
specified) are always clipped against the six half-spaces defined by the left, right, bottom, top, near,
and far planes of the view volume. Applications can specify optional application-specific clipping
planes to be applied in eye coordinates.

color index
A single value that represents a color by name, rather than by value. OpenGL color indexes are
treated as continuous values (for example, floating-point numbers) while operations such as
interpolation and dithering are performed on them. Color indexes stored in the frame buffer are
always integer values, however. Floating-point indexes are converted to integers by rounding to the
nearest integer value.

color-index mode
Mode of an OpenGL context in which its color buffers store color indexes, rather than red, green,
blue, and alpha color components.

color map
A table of index-to-RGB mappings that is accessed by the display hardware. Each color index is
read from the color buffer, converted to an RGB triple by lookup in the color map, and sent to the
monitor.

component
A single, continuous (for example, floating-point) value that represents an intensity or quantity.
Usually, a component value of zero represents the minimum value or intensity, and a component
value of one represents the maximum value or intensity, though other normalizations are sometimes
used. Because component values are interpreted in a normalized range, they are specified
independently of actual resolution. For example, the RGB triple (1, 1, 1) is white, regardless of
whether the color buffers store 4, 8, or 12 bits each.

Out-of-range components are typically clamped to the normalized range, not truncated or otherwise
interpreted. For example, the RGB triple (1.4, 1.5, 0.9) is clamped to (1.0, 1.0, 0.9) before it's used to
update the color buffer. Red, green, blue, alpha, and depth are always treated as components, never
as indexes.

context
A complete set of OpenGL state variables. Note that frame buffer contents are not part of the
OpenGL state, but that the configuration of the frame buffer is.

convex
Condition of a polygon in which no straight line in the plane of the polygon intersects the polygon
more than twice.

convex hull
The smallest convex region enclosing a specified group of points. In two dimensions, the convex hull
is found conceptually by stretching a rubber band around the points so that all of the points lie within
the band.

coordinate system
In n-dimensional space, a set of n linearly independent vectors anchored to a point (called the
origin). A group of coordinates specifies a point in space (or a vector from the origin) by indicating
how far to travel along each vector to reach the point (or tip of the vector).

culling
The process of eliminating a front face or back face of a polygon so that the face isn't drawn.

current matrix
A matrix that transforms coordinates in one coordinate system to coordinates of another system.
There are three current matrices in OpenGL: the modelview matrix, which transforms object
coordinates (coordinates specified by the programmer) to eye coordinates; the perspective matrix,
which transforms eye coordinates to clip coordinates; and the texture matrix, which transforms
specified or generated texture coordinates as described by the matrix. Each current matrix is the top
element on a stack of matrices. Each of the three stacks can be manipulated with OpenGL matrix-
manipulation commands.

current raster position
A window coordinate position that specifies the placement of an image primitive when it's rasterized.
The current raster position, and other current raster parameters, are updated when glRasterpos is
called.

D
depth

Generally refers to the z window coordinate.

depth-cueing
A rendering technique that assigns color based on distance from the viewpoint.

display list
A named list of OpenGL commands. Display lists are always stored on the server, so display lists
can be used to reduce the network traffic in client/server environments. The contents of a display list
may be preprocessed, and might therefore execute more efficiently than the same set of OpenGL
commands executed in immediate mode. Such preprocessing is especially important for computing
intensive commands such as glTexImage.

dithering
A technique for increasing the perceived range of colors in an image at the cost of spatial resolution.
Adjacent pixels are assigned differing color values. When viewed from a distance, these colors seem
to blend into a single intermediate color. The technique is similar to the half-toning used in black-
and-white publications to achieve shades of gray.

double-buffering
Using OpenGL contexts in which both front and back color buffers are double-buffered. Smooth
animation is accomplished by rendering into only the back buffer (which isn't displayed), then
causing the front and back buffers to be swapped.

E
element

A single component or index.

evaluation
The OpenGL process of generating object-coordinate vertices and parameters from previously
specified Bézier equations.

execute
To call an OpenGL command in immediate mode or to call the display list that the command is a part
of.

eye coordinates
The coordinate system that follows transformation by the modelview matrix and that precedes
transformation by the projection matrix. Lighting and application-specific clipping are done in eye
coordinates.

F
face

One side of a polygon. Each polygon has two faces: a front face and a back face. Only one face is
ever visible in the window. Whether the back or front face is visible is effectively determined after the
polygon is projected onto the window. After this projection, if the polygon's edges are directed
clockwise, one of the faces is visible; if directed counterclockwise, the other face is visible. Whether
clockwise corresponds to front or back (and counterclockwise corresponds to back or front) is
determined by the OpenGL programmer.

flat shading
Refers to coloring a primitive with a single, constant color across its extent, rather than smoothly
interpolating colors across the primitive. See Gouraud shading.

fog
A rendering technique that can be used to simulate atmospheric effects such as haze, fog, and smog
by fading object colors to a background color based on distance from the viewer. Fog also aids in the
perception of distance from the viewer, giving a depth cue. See also depth-cueing.

font
A group of graphical character representations usually used to display strings of text. The characters
may be roman letters, mathematical symbols, Asian ideograms, Egyptian hieroglyphs, and so on.

fragment
Graphic data generated by the rasterization of primitives. Each fragment corresponds to a single
pixel and includes color, depth, and sometimes texture-coordinate values.

frame buffer
A stack of bitplanes. All the buffers of a given window or context. Sometimes includes all the pixel
memory of the graphics hardware accelerator. See also bitplane.

front face
See face.

frustum
The view volume warped by perspective division.

G
gamma correction

A function applied to colors stored in the frame buffer to correct for the nonlinear response of the eye
(and sometimes of the monitor) to linear changes in color-intensity values.

geometric model
The object-coordinate vertices and parameters that describe an object. Note that OpenGL doesn't
define a syntax for geometric models, but rather a syntax and semantics for the rendering of
geometric models.

geometric object
A geometric model.

geometric primitive
A point, line, or polygon.

Gouraud shading
Smooth interpolation of colors across a polygon or line segment. Colors are assigned at vertices and
linearly interpolated across the primitive to produce a relatively smooth variation in color. Also called
smooth shading.

group
A group of one, two, three, or four elements that represents each pixel of an image in client memory.
Thus, in the context of a client memory image, a group and a pixel are the same thing.

H
half-space

The result of a plane dividing space. A plane divides space into two half-spaces.

homogenous coordinates
A set of n+1 coordinates used to represent points in n-dimensional projective space. Points in
projective space can be thought of as points in Euclidean space together with some points at infinity.
The coordinates are homogenous because a scaling of each of the coordinates by the same non-
zero constant doesn't alter the point to which the coordinates refer. Homogeneous coordinates are
useful in the calculations of projective geometry, and thus in computer graphics, where scenes must
be projected onto a window.

I
image

A rectangular array of pixels, either in client memory or in the frame buffer.

image primitive
A bitmap or an image.

immediate mode
Mode in which an OpenGL command is called directly, rather than from a display list. No immediate-
mode bit exists; the mode in immediate mode refers to usage of OpenGL, rather than to a specific bit
of OpenGL state.

index
A single value that is interpreted as an absolute value, rather than as a normalized value in a
specified range (as is a component). Color indexes are the names of colors, which are dereferenced
by the display hardware using the color map. Indexes are typically masked, rather than clamped,
when out of range. For example, the index 0xf7 is masked to 0x7 when written to a 4-bit buffer (color
or stencil). Color indexes and stencil indexes are always treated as indexes, never as components.

IRIS GL
Silicon Graphics' proprietary graphics library, developed from 1982 through 1992. OpenGL was
designed with IRIS GL as a starting point.

JK
jaggies

Artifacts of aliased rendering. The edges of primitives that are rendered with aliasing are jagged
rather than smooth. A near-horizontal aliased line, for example, is rendered as a set of horizontal
lines on adjacent pixel rows, rather than as a smooth, continuous line.

L
lighting

The process of computing the color of a vertex based on current lights, material properties, and
lighting-model modes.

line
A straight region of finite width between two vertices. (Unlike mathematical lines, OpenGL lines have
finite width and length.) Each segment of a strip of lines is itself a line.

luminance
The perceived brightness of a surface. Often refers to a weighted average of red, green, and blue
color values that gives the perceived brightness of the combination.

M
matrices

Plural of matrix. See matrix.

matrix
A two-dimensional array of values. OpenGL matrices are all 4x4, though when they are stored in
client memory they're treated as 1x16 single-dimension arrays.

modelview matrix
The 4x4 matrix that transforms points, lines, polygons, and raster positions from object coordinates
to eye coordinates.

monitor
The device that displays the image in the frame buffer.

motion blurring
A technique that simulates what you get on a piece of film when you take a picture of a moving
object, or when you move the camera when you take a picture of a stationary object. In animations
without motion blur, object motion can appear jerky.

N
network

A connection between two or more computers that allows each to transfer data to and from the
others.

nonconvex
A state of a polygon in which a line in the plane of the polygon intersects the polygon more than
twice.

normal
A three-component plane equation that defines the angular orientation, but not position, of a plane or
surface.

normalize
To divide each of the components of a normal by the square root of the sum of their squares. Then, if
the normal is thought of as a vector from the origin to the point (nx¢, ny¢, nx¢), this vector has unit
length:

nx¢ = nx/factor
ny¢ = ny/factor
nz¢ = nz/factor

normal vector
See normal.

NURBS
Non-Uniform Rational B-Spline. A common way to specify parametric curves and surfaces.

O
object

An object-coordinate model that is rendered as a collection of primitives.

object coordinates
Coordinate system prior to any OpenGL transformation.

orthographic
Nonperspective projection, as in some engineering drawings, with no foreshortening.

P
parameter

A value passed as an argument to an OpenGL command. Sometimes one of the values passed by
reference to an OpenGL command.

perspective division
The division of x, y, and z by w, carried out in clip coordinates. See also clip coordinates.

pixel
Picture element. The bits at location (x, y) of all the bitplanes in the frame buffer constitute the single
pixel (x, y). In an image in client memory, a pixel is one group of elements. In OpenGL window
coordinates, each pixel corresponds to a 1.0x1.0 screen area. The coordinates of the lower left
corner of the pixel names x, y are (x, y), and the upper right corner are (x+1, y+1).

point
An exact location in space, which is rendered as a finite-diameter dot.

polygon
A near-planar surface bounded by edges specified by vertices. Each triangle of a triangle mesh is a
polygon, as is each quadrilateral of a quadrilateral mesh. The rectangle specified by glRect is also a
polygon.

primitive
A shape (such as a point, line, polygon, bitmap or image) that can be drawn, stored, and
manipulated as a discrete entity; elements from which large graphic designs are created.

projection matrix
The 4x4 matrix that transforms points, lines, polygons, and raster positions from eye coordinates to
clip coordinates.

Q
quadrilateral

A polygon with four edges.

R
rasterize

To convert a projected point, line, or polygon, or the pixels of a bitmap or image, to fragments, each
corresponding to a pixel in the frame buffer. Note that all primitives are rasterized, not just points,
lines, and polygons.

rectangle
A quadrilateral whose alternate edges are parallel to each other in object coordinates. Polygons
specified with glRect*() are always rectangles; other quadrilaterals might be rectangles.

rendering
Conversion of primitives specified in object coordinates to an image in the frame buffer. Rendering is
the primary operation of OpenGL.

RGBA
The red, green, blue, and alpha color components of the RGBA mode.

RGBA mode
An OpenGL context in which its color buffers store red, green, blue, and alpha color components,
rather than color indexes.

S
server

The computer on which OpenGL commands are executed. This might differ from the computer from
which commands are issued. See also client.

shading
The process of interpolating color within the interior of a polygon, or between the vertices of a line,
during rasterization.

single-buffering
An OpenGL context without a back color buffer.

stipple
A one- or two-dimensional binary pattern that defeats the generation of fragments where its value is
zero. Line stipples are one-dimensional and are applied relative to the start of a line. Polygon
stipples are two-dimensional and are applied with a fixed orientation to the window.

T
tessellation

Reduction of a portion of an analytic surface to a mesh of polygons, or of a portion of an analytic
curve to a sequence of lines.

texel
A texture element. A texel is obtained from texture memory and represents the color of the texture to
be applied to a corresponding fragment. See also fragment.

texture
A one- or two-dimensional image used to modify the color of fragments produced by rasterization.
See also rasterize.

texture mapping
The process of applying an image (the texture) to a primitive. Texture mapping is often used to add
realism to a scene. For example, you could apply a picture of a building facade to a polygon
representing a wall. See also texture.

texture matrix
The 4x4 matrix that transforms texture coordinates from the coordinates that they're specified in to
the coordinates that are used for interpolation and texture lookup.

transformation
A warping of space. In OpenGL, transformations are limited to projective transformations that include
anything that can be represented by a 4x4 matrix. Such transformations include rotations,
translations, (nonuniform) scalings along the coordinate axes, perspective transformations, and
combinations of these.

triangle
A polygon with three edges. Triangles are always convex.

U V
vertex

A point in three-dimensional space.

vertices
Preferred plural of vertex. See vertex.

viewpoint
The origin of either the eye- or the clip-coordinate system, depending on context. For example, when
discussing lighting, the viewpoint is the origin of the eye-coordinate system. When discussing
projection, the viewpoint is the origin of the clip-coordinate system. With a typical projection matrix,
the eye-coordinate and clip-coordinate origins are at the same location.

view volume
The volume in clip coordinates whose coordinates satisfy the three conditions

 - w £ x £ w
 - w £ y £ w
 - w £ z £ w

W
window

A subregion of the frame buffer, usually rectangular, whose pixels all have the same buffer
configuration. An OpenGL context renders to one window at a time.

window-aligned
When referring to line segments or polygon edges, implies that these are parallel to the window
boundaries. (In OpenGL, the window is rectangular, with horizontal and vertical edges). When
referring to a polygon pattern, implies that the pattern is fixed relative to the window origin.

window coordinates
The coordinate system of a window. It's important to distinguish between the names of pixels, which
are discrete, and the window-coordinate system, which is continuous. For example, the pixel at the
lower-left corner of a window is pixel (0, 0); the window coordinates of the center of this pixel are
(0.5, 0.5, z). Note that window coordinates include a depth, or z, component, and that this
component is continuous as well.

wireframe
A representation of an object that contains line segments only. Typically, the line segments indicate
polygon edges.

X Y Z
X Window System

A window system used by many of the machines on which OpenGL is implemented.

About OpenGL
OpenGL, originally developed by Silicon Graphics Incorporated (SGI) for their graphics workstations, lets
applications create high-quality color images independent of windowing systems, operating systems, and
hardware.

The OpenGL Architecture Review Board (ARB), an industry consortium, is currently responsible for
defining OpenGL. Members of the ARB include Silicon Graphics Incorporated, Microsoft Corporation,
Intel, IBM, and Digital Equipment Corporation.

The official reference document for OpenGL, version 1, is the OpenGL Reference Manual, by the
OpenGL Architecture Review Board (ISBN 0-201-63276-4). The official guide to learning OpenGL, version
1, is the OpenGL Programming Guide, by Jackie Neider, Tom Davis, and Mason Woo (ISBN 0-201-
63274-8). Both books are published by Addison-Wesley.

